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Abstract

We present a comprehensive approach for the design of adjustable-focus lenses based on the

Alvarez principle. The design methodology consists of dividing the lens into two parts: the

inner, optical part, where the optical quality is optimized, and the outer, mechanical part,

connecting the optical part to the frame. For the optical part, we present a complete optical

design methodology to minimize common optical aberrations, considered in ophthalmic lens

design, for different focus adjustments. For the mechanical part, we show how to extend the

lens surfaces to connect the optical zone with the frame, such that the entire surface is smooth

and has acceptable thickness.

Keywords: Alvarez lenses, ophthalmic lens design, adjustable-focus lenses

1. Introduction

In 1967 Alvarez invented [1] a new type of lenses with

varifocal properties, intended to be used as spectacle lenses

for presbyopia correction. Similar lenses were proposed

independently by Lohmann [2]. Two lenses of this type provide

an optical power change when one of them is laterally shifted

with respect to the other. We shall denote these lenses Alvarez

lenses.

As far as we know, no spectacles based on the Alvarez

patent for treatment of presbyopia were ever built and

commercialized. This is probably due to manufacturing issues,

and also because the optical quality of the specific model

proposed by Alvarez [1] was not good enough, in particular in

comparison with modern designs of progressive addition lenses

(PALs).

However, in recent years there has been new interest in

using such lenses as adjustable-focus spectacle lenses for de-

veloping countries. The World Health Organization estimates

that about 150 million people are visually impaired because of

myopia, hypermetropia or astigmatism [3], and eight million

of these are considered blind. Also, a recent study, based on

population-based surveys, estimates that more than one billion

people are affected by presbyopia, with more than half of them

without any type of visual correction for it [4].

The lack of refractive error correction in these people is

due to the unaffordable economical cost and inaccessibility to

refraction and spectacle lens dispensing services. Spectacles

with self-adjusting refractive power offers a low-cost and

adaptable technology for refractive error measurement and

correction. Indeed the Alvarez lenses provide a good option

for such a technology.

We comment that several spectacle models have been

developed and manufactured, or are currently under develop-

ment, based on the Alvarez concept for the general purpose

of providing affordable refraction correction for people in

developing countries. Further information on the status of

these models can be found on their web pages [5–7]. However,

no public information is available about the optical design

of the lenses, though some groups have patented their frame

mechanical designs [8, 9].

To develop self-adjustable lenses based on the Alvarez

principle one needs to solve three main problems. First, one

should design one pair of lenses per eye with good optical

quality at different relative shift positions, so a person can

adjust the pair to achieve optimal power. Then, one should

design a frame with appropriate mechanical properties to allow

for a convenient and stable shifting of the lenses. The third

problem that we must overcome relates to the special geometry

of the lenses. As will be explained below, the Alvarez lenses

suffer from an inherent problem: their thickness grows rapidly

when one moves away from the optical center. Since some

of the lens parameters are optically constrained, and since
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aesthetic and mechanical issues pose limits on the frame

design, one must overcome the rapid growth in thickness by

means of a special design of the peripheral part of the lenses.

In summary, a global design of the spectacle lenses

comprises three design objectives: the optical part of the

lenses, the frame, and the design of the peripheral part of the

lenses, where the optical zone of the lenses is extended to

meet the constraints imposed by the frame. The goal of this

paper is to present methods to deal with the first and the third

design objectives. An approach for the second objective (frame

design) was previously considered by us [10].

A complete and novel optical design methodology is

presented in section 2 (first design objective). This section

also includes the analysis of a few theoretical issues related

to Alvarez lenses. In section 3 we present an example of

application of the optical design methodology. In section 4

we propose a way to design the mechanical (peripheral) zone

of the lens (third design objective). Finally, in section 5, some

general issues are discussed.

Before proceeding we make two comments on our

terminology. First, we use here the notion of astigmatism in the

sense in which is used in the optometric community; namely,

the astigmatism, or cylinder, is the difference between the two

principal powers of the lens. Second, Alvarez-type spectacles

contain two lenses per eye. We sometimes refer to the entire

optical element consisting of the two lenses as a lens. The

interpretation of this expression as the combined effect of two

lenses is obvious from the context.

2. Optical design of Alvarez-type spectacle lenses

The key idea of Alvarez [1] was to consider a refractive surface

of the form

u(x, y) = A(x3/3+ xy2)+ Bx2 + Cxy + Dx + F(y). (1)

Here (x, y) denote coordinates in the plane, with (0, 0) being

the optical center of the lens. The most relevant component of

this equation is A(x3/3+ xy2), which represents the so-called

‘monkey saddle’ surface. This surface contains an umbilical

point at the central point (0, 0).

A horizontal shift by δ changes the surface to first order

by

δA(x2 + y2). (2)

This explains, at least to first order, why a horizontal shift

varies the power of the lens. We term a surface like u an

Alvarez surface. Therefore the quantity A is a measure of the

power change that we gain by shifting the lens horizontally by

δ. The monkey saddle surface reveals the thickness problem,

since the cubic term grows rapidly when we move away from

(0, 0).

An actual design is more complicated than the simple

monkey saddle surface. At the very least, one should consider

lenses comprising one arbitrary surface and another surface

that is cubic with respect to one of the coordinates. We use

a more general type of surfaces that take the form [11]

u(x, y) =
cr 2

1+
√

1− (K + 1)cr 2
+ p1x

3 + p2yx2 + p3xy2

+ p4y3 + p5xy + p6x + p7y. (3)

Here r =
√

x2 + y2, and c and K are the radius of curvature

and the asphericity of the base conic. We define two lenses;

each of them has one surface described by equation (3) and the

other is a plane, such that the planar surfaces are in contact.

The horizontal movement is achieved by sliding the planar

surfaces of the lenses with respect to each other. One reason

for using an Alvarez-type surface in both lenses is that if the

frame’s mechanics allows for a maximal shift by δ, then a shift

of both lenses by δ in opposite directions gives a relative shift

of 2δ. This doubles the dynamical range of the entire spectacle.

Alvarez [1] already proposed to include the linear term

(p6 or p7 depending on the direction of the lateral shift) to

control the lens thickness. Besides this reason we also used

this term to control the overall optical quality of the lenses.

However, a relevant novelty of our design methodology is that

we optimize the nine parameters (the c, K and pi) of each

surface independently. This provides more degrees of freedom

for the search for optimal solutions.

2.1. Optical quality analysis

In ophthalmic lens design the shape of the lens surfaces is

designed to improve the optical quality for different gaze

directions. It is customary to assume that the pupil size is

small compared with the area of the lenses and object field-

of-view angles, so the main aberrations to be corrected are

oblique astigmatism and power error [12]. The other aberration

that could be relevant is transverse chromatic aberration [13],

which is mainly controlled with proper material selection, so it

will not be studied in this work.

The common method to compute the actual power

and astigmatism distribution across the lens [14] is shown

schematically in figure 1. First, a ray is traced from the center

of rotation of the eye (normally modeled to be located 27 mm

behind the lens), through the lens, to a far object point (O in

figure 1) on the other side of the lens. Then, one computes

the refraction by the lens of a small pencil of rays, or a

small piece of a wavefront, as they propagate from that object

point toward the eye [14]. There are a number of ways to

trace this pencil of rays, or small wavefront. For instance,

in the case of wavefront tracing, Coddington equations are

conventionally applied to compute wavefront refraction at the

interface surfaces [15]. However, in the case of highly non-

spherical surfaces, such as Alvarez surfaces, more complicated

formulas must be applied [16–19]. Another option [14] is to

trace a small pencil of rays around each base ray, and then to

compute the power and astigmatism from the associated phase

function at the image plane (Ŵ in figure 1). This calculation is

repeated for many viewing directions, thus generating a power

and astigmatism distribution for the lens system.

2.2. Power variation

As we stated above, Alvarez invented the surface profile of his

lens for the purpose of achieving varying optical power upon

shifting it with respect to a reference surface. However, even

a single stationary Alvarez lens has an interesting property: its

paraxial power varies linearly [20]. This makes it a suitable
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Figure 1. General scheme to compute power error and astigmatism
for different gaze directions.

candidate to model progressive addition lenses (PALs). While

PALs are, in general, free-form surfaces and thus are not

amenable to explicit analysis, the Alvarez lens has a simple

analytical form. To see this property of the Alvarez surface,

consider a wavefront propagating in air and then refracted

by a lens surface u(x, y) into a lens with refraction index

n. In the paraxial limit, where we neglect the effect of ray

refraction (i.e. the normal to the wavefront and the normal

to the refraction surface are nearly the same), the power

(i.e. curvature) of the refracted wavefront is given by [20]

Pa =
n − 1

2
(uxx + u yy). (4)

Applying this formula to the surface (1) gives

Pa = 2(n − 1)Ax . (5)

This property of varying power is of course undesired

when designing a single vision lens, where one prefers a

lens with stable optical power. Thus we term the power

deviation at any given point from the power at the lens center:

power error. It seems at first sight that an optical element

like the one we consider here, where the element consists of

two Alvarez-type surfaces with essentially the same Alvarez

coefficient A, will have a negligible power error. Indeed, let

Q1 = (x1, y1, u1(x1, y1)) and Q2 = (x2, y2, u2(x2, y2)) be

the hit points of the wavefront with the front and back surfaces,

respectively. Let u1 and u2 both be of the same shape (1) except

that one of them is shifted vertically by some distance T =

u1(0, 0) − u2(0, 0). We assume again the paraxial limit (4),

and furthermore we use a thin lens approximation, where the

length traveled by the wavefront inside the lens is negligible

relative to its radius of curvature. Then, after refraction at the

front and the back surface the power of the wavefront is

Pa = 2(n − 1)A(x1 − x2). (6)

Finally, the paraxial and thin lens approximations together

imply that x1 ∼ x2, and thus Pa ∼ 0.

It turns out, however, that the calculation above is not valid

for a typical Alvarez pair in a practical setup. The reason is

that the cubic growth of the surfaces, and the constraints it

imposes on the thickness at the lens vertex and near the frame,

imply that the thin lens approximation is not precise enough

in the sense that the deflection x1 − x2 is not negligible. For

example, we calculated a practical design where our goal was

to achieve an Alvarez lens with 5 D dynamic range with lateral

shifts of up to 1 mm. This required us to select the Alvarez

coefficient A = 0.00125. For such a lens we found out that,

using a reasonable central thickness, a ray in a gaze direction

of about 20◦ along the horizontal (y = 0 axis) is shifted in

the x direction by at least 1 mm, that is x1 − x2 > 1. Using

formula (6) with n = 1.5 implies that the power of such a

wavefront is over 1.25 D in this moderate gaze direction. Since

the power at the vertex is zero, we obtain a power error of at

least 1.25 D. The rough calculation above was verified by us

using the precise tracing algorithms mentioned in section 2.1.

We thus conclude that even an optical element consisting

of two identical Alvarez surfaces suffers from a considerable

power error. One possible way to reduce the power error is

to apply a mechanical design that allows for a larger relative

shift, thus enabling the reduction of the coefficient A without

compromising the dynamical range of the lens. However, we

note that larger lateral shifts also increase power errors, so a

full optical design methodology must always be applied, such

as the one presented in section 3.

2.3. Prismatic errors

Besides optical aberrations, prismatic errors are also consid-

ered in ophthalmic lens design. In conventional spectacles,

these errors appear in the presence of lens misalignments

(e.g. pantoscopic or dihedral tilts) with respect to the line of

sight [15]. However, in Alvarez lenses prismatic errors are

present even without misalignments [11].

Consider an Alvarez surface of the form u(x, y) =

Ax3/3 + Cx , so ∂xu = Ax2 + C . This implies that the

normal at the vertex point of the surface u(0, 0) is not collinear

with the optical axis (z-direction), unless C = 0. Hence

the chief ray traced along the optical axis is deflected from it

after refraction at the Alvarez lens. Of course it is possible

to select the parameter C in order to cancel (or minimize) the

prismatic error, but when a lateral shift between the lenses is

introduced this cancelation is lost (angle A in figure 1 cannot

be zero at the same time for all focus configurations). For

illustrative purposes we show an example of this effect in

figure 2. A simple Alvarez lens was found to cancel the

prismatic error for the neutral configuration (no lateral shift

between lenses). However, when the lenses are moved to

generate positive power (figure 2(a)) the chief ray is deflected

in the −x direction. Conversely, if lenses are moved to

generate negative power (figure 2(b)) the chief ray is deflected

in the opposite direction.

As an alternative, we propose a simple way to partially

minimize the effects of prismatic errors. First, one should

minimize the prismatic error only for the neutral configuration

by means of including it as a target in the optimization

merit function used to design Alvarez lenses. In a second

stage, one can apply a strategy, already used in ophthalmic
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Figure 2. Chief ray tracing (black solid line) through shifted Alvarez
lenses inducing (a) positive power or (b) negative power. C is the
center of rotation of the eye.

lens design, to attenuate the pantoscopic angle [21]: the two

lenses can be moved by the same magnitude (+x direction

in figure 2(a) and −x direction in figure 2(b)) such that the

chief ray passes through the center of rotation of the eye (C in

figure 2). Obviously, for this purpose it is necessary to design a

mechanical frame that can move each lens independently, like

the one proposed in our previous work [10].

2.4. Merit function

In a zoom system the optical quality is typically controlled for

three different focus positions [22]. Similarly, we optimized

the optical quality of our lens for three relative positions

between lenses, denoted by the index j : both lenses are shifted

by −1 mm ( j = 1), lenses are not moved ( j = 2), and lenses

are shifted by +1 mm ( j = 3). Here 1 is the maximal lateral

shift between lenses. We define the following variables:

• PC j is the target power at the center of the lens for each

configuration j (relative position between lenses).

• The index i denotes a point on the lens surface, determined

by the gaze direction.

• Pj i and A j i are, respectively, the power and astigmatism

for a specific point i on the lens for a specific lens

configuration j . From here we define the power error as

PE j i = |Pj i − PC j |.

• The variable PR2 is the prismatic deviation at the center of

the lens for the neutral configuration j = 2. The prismatic

error PRE is defined as PRE = |PR2|.

• An important term in the merit function controls the power

variation upon a lens shift. We call it central power error,

and define it as CPE = |P1I − PC1| + |P3I − PC3|,

where P1I and P3I are the computed central power and

PC1 and PC3 are the target nominal central powers for lens

configurations j = 1 and j = 3, respectively.

• It is useful to weigh the power and astigmatism of each

lens in each configuration with respect to the viewing

directions. Therefore we define two weighted functions;

weighted power WPE and weighted astigmatism WA:

WPE =

∑ j=3
j=1

∑i=n
i=1 wp j iPE j i

3n
, (7)

WA =

∑ j=3
j=1

∑i=n
i=1 wa j i |A ji|

3n
. (8)

Here we used wp j i and wa j i to denote the weights of the power

error and astigmatism error, respectively.

Using the variables defined above, we set the merit

function to be

MF1 = WPE+W A +wrPRE+wcCPE, (9)

where wr and wc are relative weights. We also defined an

auxiliary merit function, that will be used in the optimization

process:

MF2 = |P2I − PC2|. (10)

2.5. Optimization strategy

We optimized the merit functions with the Nelder–Nead

algorithm as implemented in the MATLAB optimization

toolbox, though with some slight variations, specifically the

way the initial simplex is constructed.

The optimization of the merit function is performed

with respect to many parameters (the nine parameters of

equation (3)) for each surface of the Alvarez lens. To define

an efficient optimization process one can adapt a cascade

approach, where different design parameters are optimized at

successive steps. At each step, the initial values used to start

the new optimization are the values of the parameters obtained

at the previous step.

We used the procedure shown in the flow chart of figure 3.

The rectangular boxes show the parameters optimized at each

step, and MFi denotes the merit function used at each step.

The superscript denotes whether the parameter refers to the

posterior (2) or the anterior lens (1). R, Q and p j are the

different parameters of equation (3).

In a first step, the optimization procedure selects the initial

values for the radii of curvature. An initial value for R1 is

chosen, and then the value R2 that minimizes themerit function

MF2 is calculated. From this first optimization, the subsequent

steps minimize the global merit function MF1.
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Figure 3. Flow chart in the optimization algorithm. Rectangular
boxes contain the parameters optimized at each step. MFi denotes
the merit function used at each step.

2.6. Automatic weight adjustment

In optical design, when different quality metrics are targeted

simultaneously, proper selection of the weights assigned to

each target is critical for a successful optimization. It has

been recognized that the weights must be large enough to force

reduction of the specific associated errors but, at the same time,

their values should not be too large, because they could distort

the merit function topology, thus breaking the correspondence

between its minimization and finding an optimal design [25].

Typically, optical designers set fixed weights for the

optimization, but in many cases they have to manually adjust

the weights after some optimization iterations in order to obtain

better results. One way to avoid this trial and error step

is to select a method that automatically determines weight

adjustments in each iteration [23, 24]. This type of approach

is particularly suitable when cost-based tolerances are included

in the merit function [23].

Following this idea we applied a novel weight adjustment

algorithm suitable for our design problem. We considered

that power errors or astigmatism below 0.25 D are inside the

acceptable tolerance in spectacle lens design. Therefore, if

PE j i or A j i takes values below 0.25 D during the optimization

process, the algorithm sets the weights wp j i or wa j i to zero. If

the values exceed 0.25 D then the weights are set to be

wp j i =
|PE j i |

max{PE j i}
wa j i =

|A j i |

max{A j i}
. (11)

3. Example of application of the optical design
methodology

To show the potentials of our design methodology we present

an example of a lens design for myopia correction. To

increase the range of adjustable power, the quantity p1 (see

equation (3)) must also increase. However, it is not practical

to seek a design of adjustable spectacles covering the whole

range of refractive power errors because of physical dimension

and optical performance requirements. Therefore we shall

present a design that can correct myopia for a large subset of

the population.

To find a reasonable range of refractive errors, we exam-

ined two sets of data on refractive error prevalence. One such

study is based on the USA 1999–2004 National Health and

Nutrition Examination Survey [26], and the other study covers

Chinese people in Singapore [27]. Myopia was defined [27] as

a refraction worse than−0.5 D, and highmyopia as a refraction

worse than −5 D. In the USA study, the prevalence of myopia

was 44.7%, out of whom 14.5% were high myopic, whereas

in the Singapore study the proportion of high myopes over

the total amount of myopes was slightly larger (20%), though

some of these differences could be attributed to differences in

the average age of the populations used in these studies [26].

Considering these data, a minus spectacle model with a power

variation from −0.5 to −5 D could serve the majority of the

myopic population. A second minus model ranging from −5

to −10 D could serve almost all high myopes.

We designed a lens with a power variation from −0.5 to

−5 D. The dynamical range of 4.5 D was obtained using a

maximal lateral shift of 3 mm. We comment that the selection

of 3 mm is, at this stage, arbitrary. The maximal lateral

shift is an a priori design parameter that depends on several

criteria. On the one hand, a large maximal lateral shift permits

reducing the quantity p1 to achieve a specific power variation

and, as a consequence, to reduce the ‘surface aberrations’ of

the Alvarez lens and the axial dimensions of the spectacles. On

the other hand, smaller maximal lateral shift implies smaller

lateral dimensions, but higher p1 quantities. Also, a setup of

small lateral shifts inducing large power changes would imply

that unwanted misalignments of the lenses could generate

noticeable aberrations.

3.1. Pre-design

The initial lens of the pre-design was obtained by applying the

first two steps represented in the flow chart shown in figure 3.

In the first step, the optimization procedure selects the initial

values for the radii of curvature. Starting from an initial value

for the radius of the anterior lens, the value of the posterior lens

radius is obtained by setting the power at the central position

for the neutral configuration (optimizing merit function MF2).

In the second step, the parameters directly contributing to

the central power are optimized (p3 and R) using the merit

function MF1.

The surfaces, of the form of equation (3), had the

following values for the coefficients: inner lens,

[c, K , p] = [1/99.73, 0, 0.000 117, 0, 0.000352,

0, 0,−0.016, 0], (12)

and outer lens,

[c, K , p] = [1/186.72, 0, 0.000 117, 0, 0.000352,

0, 0,−0.016, 0]. (13)
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Figure 4. Power error (D), power deviation from the value at the
center, for the pre-design lens at three different shift-locations,
corresponding to three different central powers: (a) −0.49 D,
(b) −2.77 D and (c) −4.99 D. The x–y axes are the horizontal and
vertical eye rotations.

It was assumed that the refraction index is 1.586 (polycarbon-

ate).

The optical analysis was performed for a region covered

by 20◦ × 18◦ of eye rotations (gaze directions). We

computed the power error distribution (figure 4), namely

the power deviation from the value at the center, and the

astigmatism (figure 5) of the initial lenses defined above for

three different shifts: both lenses are shifted by 3 mm (in

opposite directions) to provide less negative power (figures 4(a)

and 5(a)), lenses are not moved (figures 4(b) and 5(b)) and both

lenses are shifted by −3 mm to provide more negative power

(figures 4(a)–(c) and 5(c)). The central powers for the first and

third shift-locations are −4.99 D and −0.49 D, respectively.

We observe that the absolute value of the power error is

around 0.4 D for many gaze directions, in particular for the

more negative power configuration (figure 4(c)). The astigma-

Figure 5. Astigmatism (D) for the non-optimized lenses at three
different shift-locations, corresponding to three different central
powers: (a) −0.49 D (b)−2.77 D and (c)−4.99 D. The x–y axes are
the horizontal and vertical eye rotations.

tism is comparable to the power variation, although it is some-

times larger, and at some points was found to be as high as 1 D.

3.2. Optimized design

Applying our optimization method to the above pre-design we

obtained the following optimal parameters.

[c, K , p] = [1/100.4, 1.8× 10−5, 0.000 12, 4.16× 10−6,

0.000 36, 6.95× 10−6, 5× 10−5,−0.016, 2.96× 10−6]

(14)

for the inner lens and

[c, K , p] = [1/189.53, 9.33× 10−5, 9.92× 10−5,

3.63× 10−6, 0.000 29, 6.03× 10−6, 2.96× 10−6,

−0.0161, 2.96× 10−6] (15)

for the outer lens.
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Figure 6. Power error (D), power deviation from the value at the
center, for the pre-design lens at three different shift-locations,
corresponding to three different central powers: (a) −0.53 D,
(b) −2.82 D and (c) −5.04 D. The x–y axes are the horizontal and
vertical eye rotations.

In figures 6 and 7 we depict the power variation and

the astigmatism for the optimized lens. We observe that the

absolute value of the power error and astigmatism is now

under 0.2 D for most of the optical zone under consideration.

Comparing to figures 4 and 5 we see that the power error

and the unwanted astigmatism were reduced by a factor of at

least 2.

4. Mechanical design

The need to reduce the lens thickness because of anatomical

and mechanical constraints was already realized by Alvarez

himself. He proposed [1] to add a linear function cx to the

monkey saddle surface. Following this idea, Barbero [11]

derived a formula for the linear coefficient, as a function of the

Figure 7. Astigmatism (D) for the optimized lenses at three different
shift-locations, corresponding to three different central powers:
(a) −0.53 D, (b) −2.82 D and (c) −5.04 D. The x–y axes are the
horizontal and vertical eye rotations.

lens diameter and the cubic coefficient, that optimally reduces

the overall thickness.

However, such a procedure has two drawbacks. First,

the linear coefficient that optimally reduces thickness is not

necessarily optimal in terms of overall optical quality of the

lens. Second, as we shall see shortly, this procedure may not

suffice to achieve a sufficient thickness reduction at some parts

of the lens.

In addition, for any type of spectacle frame on which the

lens is mounted, the edge thickness has restrictions depending

upon the frame design. As an example, a spectacle lens frame

has been presented [10] where the edge thickness only admits

variations from 1.5 to 2.4 mm. Even with a rimless spectacle

frame the edge thickness must be controlled. For example, ex-

tremely large edge thickness, besides having aesthetically un-

pleasant appearance, could cause the eyelids to touch the lens.

We therefore divided the lens into two areas. The inner

area is the optical zone that was optimized in section 3.2. The

7
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outer area of the lens is the mechanical zone that connects the

optical zone to the frame. The surface in the mechanical zone

is given by an auxiliary analytical function that is derived by

certain conditions on the smoothness of the combined surface,

and by the constraints imposed by the frame structure.

We first describe the conditions that the auxiliary

analytical surface in the mechanical zone must satisfy, and

how to construct this zone in a lens with a circular shape.

We then extend the derivation of the mechanical surface for

a non-circular contour used in spectacle frames. The different

constructions are demonstrated via examples.

4.1. Circular lens contours

The optometric industry typically uses lenses with circular

shape. We therefore start by constructing the mechanical

surface for such a case. It is convenient to use here polar

coordinates. Denote the optical (generalized Alvarez) surface

by u(r, θ) and the mechanical surface by w(r, θ). Let R0 be

the lens total radius, and let r = R be the boundary between

the optical and mechanical zones.

The function w(R0, θ) sets the thickness at the edge. In

addition, some continuity of the overall surface at the boundary

contour is desired. One reason for the desired smoothness

is optical, as strong discontinuities would imply local

irregularities of the wavefront propagation at the boundary, or

even scattering effects. Yet another reason is aesthetic; surfaces

discontinuities are noticed by other observers, which makes the

wearer less appealing. Indeed this problem becomes apparent

by visual inspection of some models that are now present on

the market.

Considering these issues, our goal is to find an

analytical expression for w(r, θ) satisfying the following three

conditions:

Continuity: u(r, θ) and w(r, θ) are equal at r = R.

Smoothness: the junction of u(r, θ) and w(r, θ) is smooth in

the sense that the first and second radial derivatives are equal

at r = R.

Edge behavior: the edge thickness of w(R0, θ) is a prescribed

function e(θ).

It is convenient to express w(r, θ) in the form

w(r, θ) = a1(θ)+ a2(θ)(r − R)+ a3(θ)(r − R)2

+ a4(θ)(r − R)3. (16)

The four conditions mentioned above are represented by the

following four equations:

a1(θ) = ur=R, (17)

a2(θ) = ∂r ur=R, (18)

2a3(θ) = ∂rr ur=R, (19)

a1(θ)+ a2(θ)(R0 − R)+ a3(θ)(R0 − R)2

+ a4(θ)(R0 − R)3 = e(θ). (20)

Equations (17)–(19) directly provide explicit expressions for

a1(θ), a2(θ) and a3(θ). Then we can compute a4(θ) by direct

substitution in equation (20):

a4(θ) =
e(θ)− a1(θ)− a2(θ)(R0 − R)− a3(θ)(R0 − R)2

(R0 − R)3
.

(21)

Figure 8. Lens thickness (mm) distribution inside a circular area of
pupil radius of 15 mm for lens examples A, B and C respectively.

As an example of the mechanical zone construction, we

define three lenses. First, the lens (A) with the surface

represented by equation (3), where the linear term is set to

zero p6 = 0, second (lens B) where we applied a thickness

reduction using the optimal value of p8 = −0.0161 as

computed in [11]. Figure 8(a) shows the lens thickness

distribution inside the lens for the first case and figure 8(b)

for the second case. Figure 9 shows the edge thickness as

a function of the angular coordinate. It is easily seen how

the linear term reduced the thickness variations of the original

monkey saddle surface, but the edge thickness is not uniform,

ranging from 2.9 to 3.1 mm, which would make this lens not

suitable for the frame proposed in [10].

In the third lens (C) we applied the mechanical zone

construction as explained above. The optical zone was set to

be R = 8 mm. The edge thickness was selected as e(r =

R0, θ) = 1.5 mm, with R0 = 12 mm. Figures 8(c) and 9

show the lens thickness distribution for this case. In the new

construction (lens C) we have a uniform thickness distribution

at the edge, and the constant thickness is within the limitation

imposed by the frame mechanics, unlike lenses A and B.

8
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Figure 9. Edge thickness (mm), thickness along the circular contour,
for lens examples A, B and C.

Figure 10. Geometry construction of a general lens contour. Zones
I–VIII represent the mechanical zone.

4.2. General lens contours

There is a great diversity of eyeglass frame shapes: square,

rectangular, oval, etc [21]. A generic shape, shown in figure 10,

comprises of rectilinear edges with rounded corners. The

rounded corners are circular arcs of specific radii of curvature.

The frame width decreases downwards at the nasal area

following the increase of the nose width. The boxed lens

system is used to define the lens shape [21]. A rectangle

is formed by the horizontal and vertical tangents to the lens

contour [15]. The boxed lens size is the dimensions of this

rectangle and the boxed center is the geometrical center of the

rectangle [21].

The lens edge shape of figure 10 can be described by the

coordinates of five points. The optical center of the lens is the

point O, which might coincide with the boxed center or not. It

is set to be the center of coordinates. The additional four points

A = (xa, ya), B = (xb, yb),

C = (xc, yc), D = (xd, yd)

Figure 11. Lens thickness (mm) distribution with surface
represented by equation (14). (a) No mechanical zone construction.
(b) Mechanical zone construction inside the non-circular geometry
represented in figure 10, where A = (−14.5, 8.7),B = (−14.5,
−8.7),C = (7.86,−8.7),D = (8.7,−8.7), Ro = 5 mm,
Ri = 0.5 mm.

are the centers of curvature of the circular arcs of the edge

corners.

We observed that for non-circular frame shapes it is

preferred to use a frame-dependent mechanical zone over

a circular mechanical zone construction, because a frame-

dependent zone provides smoother surfaces. Therefore, in the

present design we define the boundary separating the optical

zone and the mechanical zone as the offset shape of the frame

contour. Exploiting the particular geometry of the frame, this

offset is created by defining a different circle radius for the

corners. As shown in figure 10, for the inner contour we select

the radius Ri and for the outer curve (frame contour) we select

Ro.

Using the base points (A, B, C, D) we divide

the mechanical zone into eight compartments as depicted

in figure 10. We derived analytical expressions for

these compartments. It is then straightforward, although

algebraically involved, to construct a surface defined over each

compartment, so that the combined lens surface meets all the

smoothness requirements, that is, it is twice differentiable at

the boundary curve, and also meets the desired shape at the

frame contour.

As in section 4.1, we demonstrate via an example the

benefits of controlling the thickness for this general contour

using the auxiliary surface construction. Figures 11(a) and (b)

show the lens thickness distribution of the surface represented

by equation (14) without and with the mechanical zone

9
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construction, respectively. The coordinates of the points

defining the lens contour were

A = (−14.5, 8.7), B = (−14.5,−8.7),

C = (7.86,−8.7), D = (8.7,−8.7).

The corners’ circle radius was set to 5 mm and the corners’

circle radius defining the inner contour to 0.5 mm. As before,

the edge thickness was selected as e(r = Ro, θ) = 1.5 mm.

5. Discussion

We have presented a comprehensive approach for the design of

an adjustable-focus lens based on the Alvarez principle. Our

design consists of dividing the lens into two parts, an optical

zone and a mechanical zone.

For the optical part we presented a design methodology to

optimize the optical performance of the lens for different lateral

shifts and for different gaze directions. The methodology

involves a cascade of optimization steps. An important novelty

of our design methodology is that the optimized lenses of the

Alvarez pair are not equal, which is due to the fact that the

thin lens approximation is not appropriate for these designs, as

shown in section 2.2.

As an example we showed that a pair of lenses of

reasonable optical quality can be obtained with a power

dynamical range of 4.5 D with just ±3 mm lateral shift. The

lenses designed with our optical design methodology can be

manufactured using plastic injection molding, thus ensuring a

low-cost technology. The mold could be manufactured with

the help of a single point diamond turning machine.

While our design methodology has demonstrated the

feasibility of designing adjustable-focus lens with suitable

power dynamical range and reasonable optics, we now discuss

some possible ways to improve the design.

First, it could be possible to use more complex surfaces,

such as free-form surfaces, instead of the surface equation (3).

Still, it would be convenient to apply the design outlined above

as a starting point in an iterative algorithm modifying the local

parameters describing the free-form surface.

We pointed out in section 2.1 that in conventional

ophthalmic lens design the pupil size is ignored, and therefore

the pupil aberrations such as coma were not analyzed by us.

This is a reasonable assumption for simple lenses. However,

for lenses comprising complex surfaces, such as PALs, higher

order aberrations are now being considered [28, 20]. This

could be also done for Alvarez lenses. In the same context

we comment that equation (3) can be expressed in terms of

normalized Zernike polynomials (specifically coma, trefoil,

tilt, and defocus). This representation could shed light on the

‘surface aberrations’ introduced by Alvarez lenses, including

coma. However, full ray tracing must be performed because,

as explained before, the paraxial approximation is not good

enough for thick Alvarez lenses.

Regarding the mechanical zone, we showed how to

construct a mechanical zone of the lens to connect the optical

zone with the frame. Such a zone is needed since it is hard to

design a large optical zone and because the Alvarez principle

implies a rapid growth of the lens thickness. Our construction

of the mechanical zone guarantees a smooth overall surface,

since at the boundary between the zones the surfaces are by

definition twice continuously differentiable.

We have presented two methods for two particular frame

designs. A similar construction can be done for arbitrary frame

contour by using an appropriate local coordinate system. In

some extreme cases of edge thickness function e we observed

that the strong smoothness assumption at the boundary curve

gives rise to inflection points in the resulting surface. This

can be prevented by relaxing the smoothness condition, for

example by requiring only continuity of one derivative normal

to the boundary curve. Another option is to define the

surface in the mechanical zone by solving a Willmore–Helfrich

type minimization problem [29] with appropriate boundary

conditions.

We are now continuing our work along the lines we just

described for both the optical and mechanical components of

the lens. We are also exploring new concepts for the frame

design.
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