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Analysis of the optical field on the human retina
from wavefront aberration data
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Wave aberrations in the human eye are usually known with respect to the ideal spherical wavefront in the exit
pupil. Using Kirchhoff ’s diffraction theory, we have derived a diffraction integral to compute the optical field on
the retina from the wave aberration data. We have proposed a numerical algorithm based on the Stamnes–
Spjelkavik–Pedersen (SSP) method to solve that integral. We have shown which approximations are admis-
sible to reduce the complexity of the diffraction integral. In addition, we have compared our results with those
of the conventional procedure used to compute intensities on the retina. We have found significant differences
between our results and the conventional ones. © 2008 Optical Society of America

OCIS codes: 330.7326, 330.5370, 050.1970.
s
d
t
t
t
t
I
t
f
s
M
C
l
i
t
f
t
w

t
h
p
t
r
i
r
P
w
w
K
t
a
o
t
e

c

. INTRODUCTION
n optical eye modeling, specifically in ophthalmic lens de-
ign and visual performance simulations, it is often nec-
ssary to compute the intensity of light (or even the opti-
al field [1]) on the retina. In both applications, light
ropagation inside the eye is usually modeled using the
ingle-plane transition method [2]. This method is based
n two steps. First, wavefront propagation from the object
pace to a surface of the image space is modeled using
eometrical optics computations or experimentally mea-
urements. Second, having computed or measured the
ave aberration in the image space, it is necessary to

ompute the optical field in the retinal surface, solving a
iffraction integral.
This method is valid only if the only diffracted rays

eaching the image are rays coming from the aperture
top [2]. In the human eye, this occurs when object points
re not very far from the optical axis and the surfaces of
he ocular components are not very asymmetric.

As an alternative, it is possible to model light propaga-
ion through computation of cascade-aperture diffraction
ntegrals [2]. Perez et al. [3] have proposed this type of al-
orithm (applying the Debye diffraction theory) for the
uman eye. However, this procedure is computationally
emanding and needs a specific model for the internal
orphology of the human eye. Besides, in many cases, the

uman eye can be modeled as an optical system described
y a wave aberration measured experimentally in a refer-
nce surface. Thus, the single transition method is still
ery useful.

In the single transition method, it is typically assumed
hat the Fraunhofer [4] (or sometimes the Fresnel) ap-
roximation to diffraction integrals is sufficiently accu-
ate to compute the intensity on the human retina. How-
ver, Fresnel and Fraunhofer approximations are both
ased on the paraxial approximation, whose validity has
een recently questioned with respect to the human
ye [5].
1084-7529/08/092280-6/$15.00 © 2
In the human eye, wave aberrations are usually mea-
ured in a double-pass experimental setup; i.e., light is
elivered into the retina, and the reflected light from
here outward is collected onto a camera. Depending on
he specific technique, the wave aberration is measured in
he first pass (e.g., in a laser ray-tracing [6] sensor) or in
he second pass (e.g., in a Hartmann–Shack sensor [7]).
n the former, the wave aberration is measured directly in
he image space with respect to an ideal spherical wave-
ront, whereas in the latter the wave aberration is mea-
ured in the object space with respect to a plane surface.
oreno-Barriuso and Navarro [7], and more recently
astro et al. [8], have shown the experimental equiva-

ence of the wave aberration measured in the second pass
n a planar surface and the wave aberration measured in
he first pass with respect to the ideal spherical wave-
ront. Therefore, we can consider that we always know
he wave aberration with respect to the ideal spherical
avefront in the image space.
The point-spread function (PSF) of the human eye is

ypically evaluated assuming that the wave aberration
as been measured in either case with respect to the exit
lanar pupil (image space). However, as mentioned above,
he PSF should be evaluated by defining the wave aber-
ation with respect to the ideal reference wavefront in the
mage space. Therefore, a major goal of this study is to de-
ive the diffraction integrals necessary to compute the
SFs (or more generally the optical field on the retina)
ith respect to the ideal spherical wavefront instead of
ith respect to the exit planar pupil. Kraus derived
irchhoff diffraction integrals by performing the integra-

ion over a spherical wavefront surface rather than the
perture plane [9]. However, he did not consider the case
f nonspherical wave aberrations. We derived the diffrac-
ion integrals in the general case of any type of wave ab-
rration.

We performed an analysis for an efficient and accurate
omputation of that integral and studied which
008 Optical Society of America
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pproximations—those applied to simplify the exact dif-
raction integral—can be justified to reduce the computa-
ion effort. Obviously, the validity of the approximations
epends on the specific situations. We studied two situa-
ions: The axial intensity distribution, when the object is
ocated on axis in the near and far regions (depth-of-focus
nalysis), and the intensity distribution off axis in the
araxial image plane and in an out-of-focus plane.
In addition, we compared the results using the new

rocedure versus the conventional procedure. In the con-
entional procedure [10], the wave aberration is consid-
red with respect to the exit pupil plane and the PSF is
valuated by applying the Fraunhofer approximation to
he exact diffraction integral. The Fraunhofer integral is
valuated numerically by applying a fast-Fourier-
ransform (FFT) algorithm.

. DIFFRACTION INTEGRAL FORMULA
e assumed that the wavefront aberration function �W�,

efined as the difference between the real wavefront and
he ideal spherical wavefront, was known. Thus, in the
calar theory, the optical field at the ideal spherical wave-
ront ��� was (see Fig. 1) known and represented by u. We
ssumed that the amplitude of the optical field is constant
t �. An apodization of the amplitude could be considered
o account for the Stiles–Crawford effect [11]. Alterna-
ively, Vohnsen [1] proposed in a recent article to include
his effect as a retinal waveguiding transformation of the
ptical field without the need for any type of pupil
podization.
We used Kirchhoff ’s diffraction theory [12,13]. Al-

hough Kirchhoff ’s theory is not as rigorous as Sommer-
eld’s diffraction theory, it is valid for this case because
he linear dimensions of the aperture (exit pupil) are
arge compared to the wavelength and the observation
oints are not very close to the optical aperture [14].
oreover, it can be used in a more straightforward man-

er because the optical field is known in a nonplanar sur-
ace [13].

Kirchhoff ’s theorem, with Kirchhoff ’s boundary condi-
ions [13], establishes that the optical field at point O
Fig. 1) is given by the equation

ig. 1. Geometry showing the coordinates and distances used in
he diffraction integral analysis. P, point at the ideal spherical
avefront ���; O, observation point; F, paraxial focal point
u�P� =
1

4�
� �

A
�u

�

�n� eiks

s � − � eiks

s � �u

�n�dA, �1�

here � /�n denotes differentiation along the inward nor-
al to surface A, s is the distance from point P in surface
to the observation point O, and A is the part of the ideal

pherical wavefront surface ��� bounded by the exit pupil
see Fig. 1).

For points located at A, we defined a local Frenet trihe-
ron reference system (i.e., an orthonormal basis of three
ectors: The unit tangent, the unit normal, and the unit
inormal) where n is the normal coordinate to A. We as-
umed that the optical field u propagates paraxially in
he vicinity of A. This assumption is valid because we can
efine the vicinity of A as small as desired. Hence, the
hase of the optical field u for points located at A can be
xpressed as the addition of two terms: A term containing
he wavefront aberration kW, and a term considering the
hase dependence with the local propagation of the wave-
ront kn. Therefore u is given by the equation

u = eik�W+n�. �2�

ith Eq. (2), we evaluated the partial derivatives in Eq.
1). After some calculations, we obtained

u�P� =
1

4�
� �

A

eik�W+n�� eiks

s �ik −
1

s� �s

�n

− ik
eiks

s �1 +
�W

�n ��dA. �3�

e used the usual approximation [13]

ik −
1

s
� ik. �4�

his approximation is justified because the distance s
distance from any point in � to O) is much larger than
he wavelength. Under this approximation, Eq. (3) is re-
uced to

u�P� = −
ik

4�
� �

A

eik�W+n+s�

s �� �W

�n
−

�s

�n� + 1�dA. �5�

quation (5) can be expressed as

u�P� = −
ik

4�
� �

A

eik�W+n+s�

s
�K + 1�dA, �6�

here K can be interpreted as the inclination factor of a
resnel–Kirchhoff integral kernel type [13]:

K =
�W

�n
−

�s

�n
. �7�

sing cylindrical coordinates, the distance s= 	PO� 	 (Fig. 1)
s
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s = 
�o
2 + �2 + �zo − z�2 − 2�o� cos�� − �o�, �8�

here the coordinates of P and O are �� ,� ,z� and
�o ,�o ,zo�, respectively.

. ROTATIONALLY SYMMETRIC
IFFRACTION INTEGRAL
or some applications, rotational symmetry along the op-
ical axis can be assumed. In this case the diffraction in-
egral is one dimensional, and the spatial coordinates of a
oint in the space are �� ,z�. Functions s, W, and K depend
nly on �. We can now express s [Eq. (8)] as

s��� = 
��o − ��2 + �zo − z�2. �9�

he wave aberration contains only rotationally symmetric
erms. For simplicity, we assume that primary spherical
berration is the only contribution.

W��� = W40�4. �10�

pplying the chain rule to Eq. (8), we get

K��,�o,zo� =
�W���

�n
−

�s���

�n
=

��

�n� �W���

��
−

�s���

��
� . �11�

oordinates �� ,z� of a point in the ideal spherical wave-
ront are related by the sag equation of a sphere:

z = za − 
za2 − �2, �12�

here za is the radius of curvature of the ideal spherical
avefront (i.e., the z coordinate of the paraxial image
oint). From Fig. 1 we could derive an explicit relation for

��

�n
= cos��,n� = − cos�− �,n� =

− �


�2 + �za − z�2
. �13�

fter applying some calculations, we obtained

�s���

��
=


za2 − �2�� − �o� − ��zo − z�


�za2 − �2���o − ��2 + �za2 − �2��zo − z�2
. �14�

sing Eqs. (11)–(14), we derived an equation for
�� ,�o ,zo� as a function of �, �o, and zo. Finally, using the
quation of K�� ,�o ,zo� and Eq. (9), we obtained an explicit
elation for the one-dimensional diffraction integral:

u��o,zo� = −
ik

4�
�

C

eik�W���+s����

s���
�K��,�o,zo� + 1�d�, �15�

here C is the space curve defining the ideal spherical
avefront in a two-dimensional space. Note that n���=0

or all points �� ,z� located at C, as n is the normal coordi-
ate with the origin of the coordinate references located
t the space curve C.

. APPROXIMATIONS TO THE
IFFRACTION INTEGRAL

ntegral (6), and its associated one-dimensional version
15), is the exact diffraction integral following Kirchhoff ’s
heorem. We studied different approximations for this in-
egral in order to evaluate which ones can be justified to
ompute intensities on the human retina.

1. Constant amplitude approximation. The inclination
actor is considered negligible �K0�, and the distance
/s is replaced with 1/zo in the integration domain. In do-

ng so, the amplitude of the complex integral kernel of Eq.
7) is constant.

2. Fresnel approximation. Term s in the exponential is
xpanded in the power series, and terms higher than the
uadratic term are neglected.

s  �zo − za� −
��o cos�� − �o�

�zo − za�
+

�2

2�zo − za�

−
���o cos�� − �o��2

2�zo − za�3 .

3. Fraunhofer approximation. In addition to the
resnel approximation, the quadratic term of the series
xpansion of s is also neglected.

s  �zo − za� −
��o cos�� − �o�

�zo − za�
.

. NUMERICAL EVALUATION OF
IFFRACTION INTEGRALS

ntegrals (6) and (15) and their approximations are com-
uted numerically. There is extensive work in the litera-
ure proposing efficient and accurate algorithms to evalu-
te diffraction integrals. Standard algorithms divide the
ntegration domain into subdomains and then approxi-

ate locally the integrand in each subdomain by expres-
ions that can be integrated analytically. A classical algo-
ithm, proposed by Hopkins and Yzuel [15], approximates
inearly the amplitude and phase. We applied an algo-
ithm proposed by Stamnes and collegeues [2,16], the so-
alled Stamnes–Spjelkavik–Pedersen (SSP) algorithm,
here a parabolic approximation is applied to the phase
nd amplitude. The SSP algorithm was implemented to
olve the one-dimensional integral [Eq. (6)]. The two-
imensional integral [Eq. (15)] was evaluated by a two-
tep process [2]: First, the application of the SSP algo-
ithm to the first integration over the angular variable for
number of constant values of the radial coordinate; sec-

nd, the integration of values from the first integration
sing a Gauss–Legendre integration formula. The algo-
ithm was implemented in code written in MatLab and C
o optimize the efficiency of the computing time. In order
o evaluate the efficiency of the algorithm, we compared it
o a generic integral solver available from Matlab (quad
unction) that makes use of an adaptive Simpson quadra-
ure method.

. SIMULATIONS
he method that we have developed in this study is valid

or any type of eye model and wave aberration. The wave
berrations can be computed theoretically or measured
xperimentally with a wavefront sensor such as laser ray
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racing [6] or a Hartmann–Shack [11] wavefront sensor.
or illustration purposes, as an example, we used a
seudoaphakic eye model with some amount of simulated
ave aberrations.
In pseudoaphakic eyes the crystalline lens is replaced

ith an intraocular lens. In such a case, it is usually nec-
ssary to compute the intensity reaching the retina when
he eye is looking at different distances. We used a
seudoaphakic eye model (see Subsection 2.1 in Barbero
nd Marcos [17]), modeling the cornea and intraocular
ens as a set of concentric surfaces and separated by ho-

ogeneous media. We set the distance from the exit pupil
o the retina �zo=20.98 mm� equal to the focal length of
he eye model. We computed the intensities on the retina
or a point object located on axis at different distances.

We performed two different analyses. (1) An axial in-
ensity evaluation where we computed intensities at the
mage point defined by the intersection of the optical axis
ith the retina for different object point vergences [object

ocation in diopters ���] ranging from −4 D to 4 D in steps
f 0.2 D. (2) A transverse intensity evaluation where we
omputed intensities at points in a transverse plane lo-
ated at the focal plane or at an out-of-focus plane.

We modeled a 6.5 mm diameter pupil (in order to test a
imit case of large pupil size), and we used different aber-
ation levels.

In order to validate the efficiency of the numerical
mplemented algorithm (SSP code), we compared it to the

atlab quad algorithm. We tested the validity of the usu-
lly applied constant amplitude approximation, assuming
or simplicity a rotationally symmetric wavefront. The
onclusions about the validity of the SSP algorithm and
he constant amplitude approximation would be the same
n the nonsymmetrical case because the approximation

ainly affects the z coordinate. We simulated a wavefront
berration containing only the spherical Zernike term
40=1 �m.
The SSP algorithm accuracy and efficiency depends on

he number of subdomains in which the pupil is divided
nd on the shape of the wave aberration function. Follow-
ng Stamnes [2], we evaluated the relative accuracy of the
SP algorithm as a function of the number of subdomains
sing the percentage error. The percentage error was
valuated as the mean percentage error of the intensity
omputation at all points in an axial or transverse inten-
ity analysis, where the reference values were obtained
sing a large number of subdomains. We evaluated the al-
orithm efficiency by estimating the computation time
eeded for the intensity evaluation of one point. We used
n AMD Athlon(tm) 64�2 dual core processor with
MBytes of RAM memory. We used two different types of
ave aberrations: (1) a rotationally symmetric wave ab-
rration �Z40=1 �m� and (2) an astigmatic wave aberra-
ion �Z22=1 �m�.

Finally, we performed an axial and transverse intensity
nalysis to evaluate the accuracy of the Fresnel and
raunhofer approximations. For this test we used an as-
igmatic wavefront �Z22=1 �m�. In addition, we also com-
uted intensities by applying the conventional procedure
see, e.g., [10,18,19]). In this procedure the wavefront ab-
rration is considered with respect to the exit pupil plane,
nd the Fraunhofer diffraction integral is used. In the
xial intensity analysis, the defocus is introduced as an
d hoc addition of a focus term �Z20� to the phase.

. RESULTS
igure 2 shows the axial and transverse intensity compu-

ations using the SSP and quad Matlab algorithms.
hereas the results were very similar when computing

he axial intensities [Fig. 2(a)], we found significant dif-
erences in the transverse intensities [Fig. 2(b)], with
ome artifacts appearing when using the Simpson algo-
ithm in the intensity computation for distances larger
han 0.4 mm off axis. Furthermore, the time employed for

single observation point to compute the exact integral
sing the Simpson versus the SSP algorithm was larger:
.95 s versus 0.99 s.

ig. 2. Normalized intensity distribution using a
seudoaphakic eye model [17]: (a) along the optical axis for dif-
erent object vergences and (b) along the plane perpendicular to
he optical axis at an image plane located 1 mm out of the
araxial focus. The intensities computed using the SSP algo-
ithm and the Simpson method are represented by a solid curve
nd black circles, respectively. The pupil radius was set to
.25 mm, the Zernike spherical aberration �Z40� was set to 1 �m,
nd the wavelength was set to 0.555 �m (photopic peak).
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Table 1 shows the percentage errors using different
umbers of subdomains and two different wave aberra-
ions. We found that the number of subdomains, and
ence the computation demands, needed to achieve an ac-
urate result—less than 0.5% of the percentage error, fol-
owing Stamnes’ [2] criteria—are much higher for the
ransverse intensity analysis and the asymmetric wave-
ront than for the axial intensity analysis and the sym-
etric wavefront. For the symmetric wavefront and the

implest case (the axial analysis), a radial sampling of 90
oints was sufficient. When performing a transverse in-

Table 1. Percentage Errors and Computation
Times (for One Observation Point) of the SSP

Algorithm as a Function of the Number of
Subdomains in the Radial „Nr… and Angular

Coordinates „N�…

N� /Nr 59 78 90

n axis intensity analysis: Z40=1 �m
1 63.55% �0.04 s� 2.73% �0.06 s� 0.002% �0.07 s�

n axis intensity analysis: Z22=1 �m
60 59.12% �0.32 s� 4.67% �0.67 s� 4.59% �1.01 s�
200 17.77% �0.24 s� 0.45% �0.89 s� 0.2% �1.44 s�
300 12.91% �0.27 s� 0.31% �1.03 s� 0.2% �1.67 s�

N� /Nr 200 400 600

ransverse intensity analysis: Z40=1 �m
59 76.19% �0.76 s� 72.04% �1.48 s� 71% �2.2 s�

146 1.92% �1.9 s� 0.89% �3.7 s� 0.35% �5.53 s�
5860 1.69% �76.16 s� 0.88% �149.1 s� 0.34% �220.97 s�

N� /Nr 400 600 1200

ransverse intensity analysis: Z22=1 �m
98 83.83% �2.96 s� 80.87% �4.42 s� 78.01% �8.75 s�
117 5.53% �3.54 s� 4.04% �5.31 s� 0.49% �10.51 s�

5860 4.68% �177.19 s� 3.08% �264.9 s� 0.49% �524.32 s�

ig. 3. Normalized intensity distribution along the optical axis
or different object vergences using a pseudoaphakic eye model
17] applying the constant amplitude approximation (solid
urve), Fresnel approximation (circles), Fraunhofer approxima-
ion (triangles), and the conventional procedure (solid curve with
ircles) as explained in Section 6. The intensity was computed us-
ng the SSP algorithm. The pupil radius was set to 3.25 mm, the
ernike astigmatic aberration �Z22� was set to 1 �m, and the

avelength was set to 0.555 �m.
ensity analysis, at least 600 angular and 146 radial sub-
omains were necessary. The sampling demands were
igher for the asymmetric wavefront, whereas for the
ransverse analysis at least 1200 angular subdomains
ere necessary.
Figure 3 shows the normalized intensity distribution

or the axial intensity analysis (asymmetric wavefront)
pplying the constant amplitude approximation, the
resnel and Fraunhofer approximations, and the conven-

ional procedure explained before. The Fraunhofer ap-
roximation did not provide a reasonable estimation at
ll, whereas the Fresnel approximation could be justified
ut still presented some artifacts in the computations.
he conventional procedure showed important differences

n the intensity computations with respect to our compu-
ations, especially regarding the decay of intensity out of
ocus.

ig. 4. Intensity distribution at points located in a transverse
lane in focus and 3 diopters (D) out of focus. The dimensions are
square of 0.1 mm. Shown are the constant amplitude approxi-
ation at focus (a) and out of focus (b); the Fresnel approxima-

ion at focus (c) and out of focus (d); and the. Fraunhofer approxi-
ation at focus (e) and out of focus (f). The intensity was

omputed using the two-dimensional SSP algorithm. The conven-
ional procedure, using a FFT algorithm, was used to generate
he intensity images at focus (g) and out of focus (h). The pupil
adius was set to 3.25 mm, the Zernike astigmatic aberration
Z � was set to 1 �m, and the wavelength is set to 0.555 �m.
22
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The same computations were performed in a transverse
nalysis, and the results are shown in Fig. 4. For this
ase, the Fraunhofer approximation failed again, but in
ddition, the Fresnel approximation presented some arti-
acts that contrasted with the constant amplitude ap-
roximation at the plane of best focus. The intensity dis-
ribution both by scale and internal structure is also
ignificantly different in the case of the conventional pro-
edure.

. DISCUSSION
sing Kirchhoff ’s diffraction theory, we have obtained the
iffraction integral necessary to compute the optical field
n the retina, knowing the wave aberration with respect
o the ideal spherical wavefront. To derive that integral,
esides applying the usual procedure in Kirchhoff ’s
heory (including Kirchhoff ’s boundary condition and the
pproximation ik�1/s), we included an extra step. We as-
umed that the optical field u propagates paraxially in
he vicinity of the ideal spherical wavefront A. As �u /�n is
valuated exclusively on surface A, the paraxial condition
s sufficient to be valid in a region as close as needed to A.
herefore, except in the case of singularities in the optical
eld, this approximation is acceptable.
Two algorithms were compared to evaluate the derived

iffraction integral: A generic adaptive Simpson quadra-
ure method and an efficient algorithm based on a local
uadratic approximation to the amplitude and phase
SSP algorithm). The Simpson method presented some in-
onsistencies when computing intensities off axis. In ad-
ition, the SSP algorithm is more efficient in terms of
omputing time.

We point out that, although the methodology is valid
or any type of wave aberration, these results and their
onclusions are strictly justified only for the pupil size
nd aberration levels described in Section 6.
The results of Figs. 3 and 4 showed that the Fresnel ap-

roximation can be justified to compute intensities on the
etina, although some artifacts could appear in some
ases (Fig. 4). As the computing time (SSP algorithm) us-
ng the constant amplitude approximation is similar to
hat using the Fresnel approximation (0.01% difference),
e recommend using the constant amplitude approxima-

ion; i.e., the inclination factor is zero, and 1/s is replaced
ith 1/zo. This approximation reduced the complexity of

he exact integral and saved computation time.
The Fraunhofer approximation results were quite dif-

erent from the exact results even at the focal plane. This
ccurred because the phase in the Fraunhofer approxima-
ion in the ideal spherical wavefront differs from a con-
tant, as it is nearly the case in the other approximations.

Finally, an important result of this work shows that the
onventional procedure used in the visual optics commu-
ity to compute intensities at the retinal plane (PSFs) dif-
ers significantly from the exact results. In the conven-
ional procedure, the fact that the wave aberration is
ssumed to be considered with respect to the exit pupil
enerates phase changes several times larger than the
avelength over the pupil size, therefore producing fast
hase shifts. This explains why typical PSF images show
trong oscillations in the intensity pattern.
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