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PURPOSE: To measure the longitudinal chromatic aberration in vivo using psychophysical and
wavefront-sensing methods in patients with bilateral implantation of monofocal intraocular
lenses (IOLs) of similar aspheric design but different materials (hydrophobic Podeye and
hydrophilic Poday).

SETTING: Instituto de Optica, Consejo Superior de Investigaciones Cientificas, Madrid, Spain.

DESIGN: Prospective observational study.

METHODS: Measurements were performed with the use of psychophysical (480 to 700 nm) and
wavefront-sensing (480 to 950 nm) methods using a custom-developed adaptive optics system.
Chromatic difference-of-focus curves were obtained from best-focus data at each wavelength,
and the longitudinal chromatic aberration was obtained from the slope of linear regressions to
those curves.

RESULTS: The longitudinal chromatic aberration from psychophysical measurements was 1.37
diopters (D) G 0.08 (SD) (hydrophobic) and 1.21 G 0.08 D (hydrophilic). From wavefront-
sensing, the longitudinal chromatic aberration was 0.88 G 0.07 D and 0.73 G 0.09 D,
respectively. At 480 to 950 nm, the longitudinal chromatic aberration was 1.27 G 0.09 D
(hydrophobic) and 1.02 G 0.13 D (hydrophilic). The longitudinal chromatic aberration was
consistently higher in eyes with the hydrophobic IOL than in eyes with the hydrophilic IOL (a
difference of 0.16 D and 0.15 D, respectively). Similar to findings in young phakic eyes, the
longitudinal chromatic aberration from the psychophysical method was consistently higher
than from wavefront-sensing, by 0.48 D (35.41%) for the hydrophobic IOL and 0.48 D
(39.43%) for the hydrophilic IOL.

CONCLUSION: Longitudinal chromatic aberrations were smaller with hydrophilic IOLs than with hy-
drophobic IOLs of the same design.

Financial Disclosure: No author has a financial or proprietary interest in any material or method
mentioned.
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In natural conditions with polychromatic light,
retinal image quality is affected both by monochro-
matic and chromatic aberrations of the ocular optics
and their interactions. Chromatic aberration in the
eye arises from the wavelength dependence of the
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refractive index of the ocular media (chromatic
dispersion) affecting diffraction, scattering, and
aberrations.1–3 Chromatic dispersion causes short
wavelengths to focus in front of long wavelengths,
producing a chromatic difference of focus between
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2116 CHROMATIC ABERRATION WITH BILATERAL HYDROPHOBIC AND HYDROPHILIC IOLS
the shorter and longer wavelengths; this is known as
longitudinal chromatic aberration.4 The interactions
between chromatic and monochromatic aberrations
have drawn attention, particularly as the magnitude
and pattern of either aberration can be altered when
the crystalline lens of the eye is replaced by an intraoc-
ular lens (IOL). In phakic eyes, it has been shown that
monochromatic aberrations play a protective role
against chromatic aberrations.5,6 This opens the dis-
cussion of whether correction of both chromatic and
monochromatic aberrations are needed to improve vi-
sual performance.7

In phakic eyes, longitudinal chromatic aberration
has been widely studied, and it is fairly accepted
that it is rather constant across the population and
with age.8,9 However, the reported longitudinal
chromatic aberration varies across studies, which is
probably associated with differences in the measure-
ment techniques, psychophysical4,9–14 and reflecto-
metric,15–19 as well as the spectral range being
tested. In a recent study,20 we presented longitudinal
chromatic aberration measured in the same subjects
using psychophysical and reflectometry techniques
in a wide spectral range (450 to 950 nm) with adap-
tive optics control of the subjects' natural aberra-
tions. The longitudinal chromatic aberration
measured psychophysically was significantly higher
than that from reflectometry techniques (1.51 diopters
[D] versus 1.00 D in the 480 to 700 nm range).

In recent years, monofocal IOL designs have
improved not only to restore transparency or to cor-
rect refractive errors (sphere and cylinder) but also
to reduce the spherical aberration of the eye.21–25

However, the replacement of the lens also modifies
the chromatic dispersion properties of the eye, as
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this is affected by the refractive index wavelength de-
pendency of the IOL material. Therefore, the optical
performance of the pseudophakic in polychromatic
light will be determined by both the IOL design and
the IOL material.

The impact of the chromatic aberrations in the pseu-
dophakic eye has been acknowledged.26–28 There are
even proposals for IOL (diffractive) designs aimed at
correcting the ocular longitudinal chromatic aberra-
tion.29,30 The dispersion properties of the IOL are
defined by the Abbe number (ranging in most designs
from 35 to 60). The higher the Abbe number, the lower
the longitudinal chromatic aberration. Most reports of
longitudinal chromatic aberration and polychromatic
optical quality in pseudophakic eyes are based on
computational predictions on eye models and the IOL
material Abbe number.26,30,31 Few studies report
in vivomeasurements of longitudinal chromatic aberra-
tion in pseudophakic eyes. Nagata et al.27 measured the
longitudinal chromatic aberration in vivo (500 to 650
nm) in pseudophakic eyes with poly(methyl methacry-
late) and acrylic IOLs, using a modified chromoretino-
scopy system.32 Perez-Merino et al.33 reported
monochromatic aberrationsmeasured at 2 wavelengths
(532 nm and 785 nm) in 2 groups of pseudophakic eyes
with IOLs (Tecnis, Abbott Medical Optics, Inc., and
Acrysof IQ, Alcon Laboratories, Inc.) of different mate-
rials and found statistical differences between the
chromatic difference of focus with the 2 IOL types
(0.46 D and 0.75 D, respectively), consistent with the
Abbe number of the IOLmaterials. Siedlecki et al.34 pre-
sented the chromatic difference of focus in pseudo-
phakic eyes with 2 types of Acrysof IOLs (IQ
SN60WF, spherical asymmetric biconvex IOL;
SA60AT, aspheric asymmetric biconvex IOL; Alcon
Laboratories, Inc.) measured at 470 nm, 525 nm, and
660 nm with the use of an autorefractometer adapted
to monochromatic measurements of refraction.

In this study, we measured in vivo the longitudi-
nal chromatic aberration in pseudophakic patients
who had bilateral implantation of monofocal
aspheric hydrophobic and hydrophilic IOLs. Mea-
surements were performed on patients using psy-
chophysical and wavefront-sensing methods on a
custom-developed adaptive optics platform provided
with a super-continuum laser source, a psychophysi-
cal channel, a Hartmann-Shack wavefront sensor,
and an electromagnetic deformable mirror to allow
control of monochromatic natural aberrations. The
psychophysical longitudinal chromatic aberration
was obtained in the visible range (480 to 700 nm),
and the longitudinal chromatic aberration from
wavefront-sensing was obtained both in the visible
(480 to 700 nm) and near infrared (IR) (700 to 900
nm) ranges. Chromatic differences in focus curves
VOL 41, OCTOBER 2015
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2117CHROMATIC ABERRATION WITH BILATERAL HYDROPHOBIC AND HYDROPHILIC IOLS
were obtained from best focus data at each wave-
length in each experiment, and the longitudinal
chromatic aberration was obtained from the slope
of linear regressions to those curves. The measured
longitudinal chromatic aberration was compared
between eyes of the same patient, with longitudinal
chromatic aberration values obtained in young
phakic patients performed using the same experi-
mental system and with longitudinal chromatic aber-
ration reported in pseudophakic patients in the
literature.

PATIENTS AND METHODS

The longitudinal chromatic aberration was obtained from
psychophysical and wavefront-sensing measurements of
best focus at 8 wavelengths in 9 patients who had bilateral
implantation of an IOL of the same design but different ma-
terial (hydrophobic Podeye and hydrophilic Poday, both
PhysIOL). One eye of each patient was randomly assigned
the hydrophobic IOL and the contralateral eye, the hydro-
philic IOL. The time between the surgeries on the eyes of a
patient was fewer than 7 days.

All participants were acquainted with the nature and
possible consequences of the study and provided written
informed consent. All protocols met the tenets of the
Declaration of Helsinki and were approved by the Spanish
National Research Council (Consejo Superior de Investiga-
ciones Científicas) Bioethical Committee. All measurements
were taken under mydriasis (tropicamide 1.0%, 2 drops
30 minutes before the beginning of the study and 1 drop
every 1 hour).

The inclusion criterion for the study were good general
health, no ocular pathology, no complications during sur-
gery, IOL power between 18.00 D and 23.00 D, natural astig-
matism less than 1.50 D, bilateral IOL implantation, a clear
capsule, and a postoperative CDVA better than 0.7.
Intraocular Lenses
The Podeye is a hydrophobic IOL, and the Poday is a hy-
drophilic IOL. Both IOLs are monofocal and aspheric but
differ in their material. Table 1 shows the characteristics of
the 2 IOL types.
Patient Assessments
Patients received a complete ophthalmic evaluation
before enrollment in the study and before surgery at the
Table 1. Specifications provided by the manufacturer.

Model Material Design*
Asph. A
Correcti

Podeye35 Hydrophobic acrylic
GF material

Monofocal, 1-piece,
double C-loop

�0

Poday Hydrophilic acrylic GF
material

Monofocal, 1-piece,
double C-loop

�0

Asph. Z aspheric; GF Z glistening free; RI Z refractive index; UV Z ultraviolet
*Data from the intraocular lens specification
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Instituto de Oftamología Avanzada, Madrid, Spain. The pre-
operative examination included uncorrected (UDVA) and
corrected (CDVA) distance visual acuities using the Early
Treatment Diabetic Retinopathy Study (ETDRS) chart, bio-
microscopy, corneal topography (Nidek Co., Ltd), tonom-
etry (Goldmann), and a fundus evaluation. Axial length,
anterior chamber depth, and white-to-white were measured
with optical biometry (IOLMaster, Carl Zeiss Meditec AG).
The IOL power was calculated with the Holladay 2 formula,
targeting emmetropia.

Postoperative clinical evaluations were at 1 day, 1 week,
and 1 month and included UDVA and CDVA using the
ETDRS charts, intraocular pressure (Goldmann), and bio-
microscopy. At the 1-month follow-up visit, the visual qual-
ity was assessed in the clinic by the objective scatter index
(OSI), modulation transfer function (MTF), and Strehl ratio,
measured using the Optical Quality Analyzer System (Visio-
metrics S.L.). Night halos were measured using Halo soft-
ware (version 1.0, University of Granada).
Surgical Technique
Surgical procedures were performed by 1 of 2 surgeons on
an outpatient basis under topical anesthesia. For phacoemul-
sification, the surgeon made a 2.2 mm clear corneal incision.
The IOLs were implanted in the capsular bag with a single-
use injection system (Microset, PhysIOL).
Polychromatic Adaptive Optics Setup
Measurements were performed using a custom-
developed adaptive optics system at the Visual Optics and
Biophotonics Laboratory (Instituto de �Optica, Consejo
Superior de Investigaciones Científicas) as described in
detail previously.20 The setup allowed control of the aberra-
tions of the subject while psychophysical settings of best
focus and wavefront aberration measurements were per-
formed at different wavelengths.

A supercontinuum laser source (SC400 femtopower 1060,
FianiumLtd.) was used as the light source of the system. This
allowed 2 independently filtered light fiber outputs (visible
channel: 480 nm, 532 nm, 550 nm, 650 nm, and 700 nm;
near IR channel: 780 nm, 827 nm, and 950 nm)with a spectral
bandwidth of approximately 5 nm (2 to 4 nm [visible]; 3 to
6 nm [near IR]). The laser power measured at the corneal
plane ranged between 0.5 mW and 50 mW, within the Amer-
ican National Standards Institute safety limits at all wave-
lengths.35–37

The main components of the adaptive optics system are as
follows: (1) A Hartmann-Shack wavefront sensor (microlens
array 40 � 32, 3.6 mm effective diameter, centered at
berration-
ng (mSA)

Hazardous Light
Protection*

Packaging
State* RI Abbe

.11 UV/blue Hydrated 1.52 w41.91

.11 UV/blue Hydrated 1.46 w58.00
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1062 nm; HASO 32 OEM, Imagine Eyes), which measures
the ocular aberrations. (2) A psychophysical channel (a slide
with a sunburst chart located in a conjugate pupil plane,
monochromatically back-illuminated with light coming
from the super-continuum laser source and subtending
1.62 degrees on the retina), which allows projection of psy-
chophysical stimuli. The luminance of the stimulus was 20
to 25 candelas [cd]/m2 in the spectral range tested psycho-
physically (450 to 700 nm) and therefore in the photopic re-
gion at all wavelengths (O10 cd/m2). (3) A Badal system
that corrects for defocus. (4) A pupil monitoring channel.
(5) An electromagnetic deformable mirror (52 actuators, 15
mm effective diameter, 50 mm stroke; Mirao, Imagine
Eyes), which for the purposes of this study was used only
to correct the aberrations of the optical system. Patients
were aligned to the system (using an x-y-z stage) using the
line of sight as a reference. A 6.0 mm artificial pupil was
placed in a conjugate pupil plane to ensure that the pupil
diameter during the measurements did not exceed that
value. All optoelectronic elements of the system (super-
continuum laser source main source, Badal system, retinal
image camera, pupil camera, Hartmann-Shack, and deform-
able mirror) are automatically controlled and synchronized
using custom-built software programmed in Visual CCC
and C# (Microsoft Corp.). A dual acousto-optic modulator
system, controlled with the software provided by the manu-
facturer, allowed automatic selection of the measurement
wavelength. The custom-developed routines use the manu-
facturer's Software Development Kit for Hartmann-Shack
centroiding detection and wave aberration polynomial
fitting. Wave aberrations were fit by the 7th-order Zernike
polynomials. The Optical Society of America convention
was used for ordering and normalization of Zernike
coefficients.38 The longitudinal chromatic aberration of the
system was measured, and measurements were corrected
by the calibrated longitudinal chromatic aberration of the
optical system, as described in detail in a previous
publication.20
Experiments
The longitudinal chromatic aberration was obtained from
psychophysical and objective estimates of best focus for each
of the tested wavelengths. The best subjective focus was
initially searched with the stimulus back-illuminated at a
reference wavelength of 550 nm and set as zero. The
following experiments were performed in this order:

Experiment 1: Psychophysical Best Focus at Different Wave-
lengths Patients adjusted their best subjective focus using
the Badal system while viewing the stimulus back-illumi-
nated with different wavelengths in visible light (480 nm,
532 nm, 550 nm, 650 nm, and 700 nm). Patients were in-
structed to use the joystick to move the Badal toward the po-
sition where the stimulus, initially blurred by means of
defocus induced with the Badal system, appeared sharp
for the first time. Patients performed a trial before the exper-
iment to become familiar with the test. The best focus set-
tings were repeated 3 times for each wavelength, presented
randomly.

Experiment 2: Hartmann-Shack Wave Aberrations at Different
Wavelengths Wave aberrations were obtained in visible
light (480 nm, 532 nm, 550 nm, 650 nm, and 700 nm) and
near IR light (780 nm, 827 nm, and 950 nm), while the Badal
J CATARACT REFRACT SURG -
system corrected the subjective defocus of the patient at
550 nm. The reference for best focus at 550 nm was
obtained subjectively under natural aberrations for experi-
ments 1 and 2.
Statistical Analysis
The best subjective foci at each wavelength in experiment
1 were directly obtained from the automatic readings of the
Badal optometer. The best foci at each wavelength in exper-
iment 2 were obtained from the 2nd-order Zernike defocus
coefficients (C0

2) in microns, from the Zernike polynomial ex-
pansions fitting the wave aberrations measured at each
wavelength and using the expression D Z �16. C0

2.O3/p
2,

where C0
2 is the defocus Zernike coefficient in microns, p is

the pupil diameter, and D is the defocus in diopters.
Chromatic difference of focus curves were obtained from

the best foci versus wavelength dataset of each experiment.
The longitudinal chromatic aberration was obtained from a
2nd-order polynomial fitting to those curves. The curves
are shifted in the vertical axis so that they cross zero at
550 nm (the reference wavelength) for a unique reference
for all techniques. For the psychophysical data, the longitu-
dinal chromatic aberration was computed for the visible
range only. For the wavefront-sensing experiments, longitu-
dinal chromatic aberration was computed for the visible (480
to 700 nm), near IR (700 to 950 nm), and total spectral (480 to
950 nm) ranges. For comparisons with the literature, the
chromatic difference of focus between 2 specific wavelengths
was also calculated.

Statistical analysis was performed with SPSS software
(International Business Machines Corp.) to test differences
in the estimated longitudinal chromatic aberration across ex-
periments and conditions. A paired-samples t test was per-
formed to analyze specific differences between conditions.
RESULTS
Patients and Intraocular Lenses
Nine patients (mean age 73.92 years G 4.28 [SD])
participated in the study. Table 2 shows the age,
refractive, and clinical profiles of the participants.
Wave Aberration Measurement at Different
Wavelengths
With wavelength, only the defocus Zernike term
showed significant differences, whereas astigmatism
and higher-order aberrations (HOAs) did not show
systematic changes. Figure 1, A, shows wave aberra-
tion maps (astigmatism and HOAs) in patient 6 for
the eye with the hydrophobic IOL and the eye with
the hydrophilic IOL, showing little variation in the
wave aberrations with wavelength. On average across
eyes, the variation of the root mean square (RMS) for
astigmatism and HOAs was less than 4% across wave-
lengths. Figure 1, B, shows the average RMS (astigma-
tism and HOAs) across wavelengths for each patient
(eyes with hydrophobic and hydrophilic IOLs, respec-
tively). The RMS for astigmatism and HOAs was, on
VOL 41, OCTOBER 2015



Table 2. Optometric subjective refractions preoperatively and 1 month postoperatively.

Subject/Eye/Sex IOL Implanted IOL Power

Preoperative Data Follow-up (1 Month)

Sph Cyl Axis DCVA (LogMAR) Sph Cyl Axis DCVA (LogMAR)

S1/R/M Hydrophobic 21.50 3 �1 80 0.4 1.5 �1.25 80 0
S1/L Hydrophilic 22.50 4 �0.5 90 0.3 0 0 0 0
S2/R/F Hydrophilic 20.50 �0.75 �1 90 0.15 0 0 0 0
S2/L Hydrophobic 21.00 �1.75 �1.25 95 0.2 0 0 0 0.05
S3/R/F Hydrophobic 21.00 1.75 �1 55 0.3 0 �0.75 80 0
S3/L Hydrophilic 19.50 1.25 �1 115 0.2 0 �0.75 100 0
S4/R/M Hydrophilic 18.50 1.25 1.25 180 0.1 �1 0 0 0
S4/L Hydrophobic 18.00 0.75 �0.5 12 0.2 0 0 0 0
S5/R/F Hydrophilic 21.00 1.75 �1 90 0.2 0 0 0 0
S5/L Hydrophobic 20.50 1.25 �0.5 65 0.25 0 0 0 0
S6/R/M Hydrophobic 23.00 �2.75 �0.75 120 0.3 0 0 0 0
S6/L Hydrophilic 22.50 �3.25 �1 110 0.25 0 0 0 0
S7/R/F Hydrophobic 20.00 �1 �2.25 20 0.5 1 �1 180 0
S7/L Hydrophilic 21.50 0.5 �0.5 180 0.3 0 0 0 0
S8/R/F Hydrophobic 18.00 �2.75 �1.5 105 0.2 0.5 �1.5 95 0
S8/L Hydrophilic 19.50 0 �1 70 0.1 0.5 �1 75 0
S9/R/F Hydrophilic 19.00 �1 �0.5 70 0.2 0 �0.75 100 0
S9/L Hydrophobic 18.00 �1 �0.75 100 0.25 0.75 �0.5 70 0

Cyl Z cylinder; DCVA Z distance-corrected visual acuity; IOL Z intraocular lens; Sph Z spherical error
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average, 0.48 G 0.03 mm for the hydrophobic IOL and
0.39 G 0.03 mm for the hydrophilic IOL.
Chromatic Difference of Focus From Psychophysical
and Wavefront-Sensing
Figure 2 shows the measured chromatic difference
of focus from psychophysical measurements (experi-
ment 1) and from the defocus Zernike coefficients
from wavefront-sensing (experiment 2) for all
measured wavelengths in each experiment. Lines
represent polynomial fitting curves to the data.
Figure 1. (A) Wave aberrationmaps for the astigmatism andHOAs in patie
the hydrophilic IOL (lower row) IOLs, for all measuredwavelengths. (B) Ave
with hydrophobic and hydrophilic IOLs, respectively) and average across e
IOLs; dashed bars Z hydrophilic IOLs).
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Longitudinal Chromatic Aberration: Differences
Across Eyes and Techniques
Figure 3 shows the longitudinal chromatic aberra-
tion from psychophysical measurements in the visible
range (480 to 700 nm), from wavefront-sensing in the
visible range (480 to 700 nm), and in the total spectral
range (480 to 950 nm) in all patients and all eyes.

Table 3 shows the average longitudinal chromatic
aberration from psychophysical and wavefront-
sensing measurements in the different spectral ranges
measured for both IOL types. The longitudinal
nt 6 in the eyewith the hydrophobic IOL (upper row) and the eyewith
raged RMS (astigmatism andHOAs) for all patients (eyes implanted
ach IOL type. Data are for 6.0 mm pupils (solid barsZ hydrophobic
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Figure 2. Chromatic difference of focus from psychophysical best focus of monochromatic stimuli (A and B) and from defocus Zernike terms
fromwavefront-sensing (C andD) for eyes with the hydrophobic IOL (A and C) and hydrophilic IOL (B andD), in all patients and all measured
wavelengths (psychophysical: 480 nm, 532 nm, 550 nm, 650 nm, and 700 nm; wavefront-sensing: 480 nm, 532 nm, 550 nm, 650 nm, 700 nm, 780
nm, 827 nm, and 950 nm). Data are referred to the best focus at 550 nm, set as zero defocus.
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chromatic aberration from the hydrophobic IOL was
statistically higher than the longitudinal chromatic
aberration from the hydrophilic IOL in both tech-
niques in the visible range as well as in the total
Figure 3. Longitudinal chromatic aberration from (A) subjective best fo
(C) visible C near IR (480 to 950 nm) spectral range in all patients and
phobic IOL; dashed bars indicate eyes with the hydrophilic IOL. Error
standard deviation of repeated measurements.

J CATARACT REFRACT SURG -
spectral range. Intersubject variability was small for
both techniques: G0.008 D for the psychophysical
technique (visible range) and G0.006 D for
wavefront-sensing (total spectral range).
cus and (B) wavefront-sensing for the visible (480 to 700 nm) and
averaged across patients. Solid bars indicate eyes with the hydro-
bars in the subjective longitudinal chromatic aberration stand for

VOL 41, OCTOBER 2015



Table 3. Mean longitudinal chromatic aberrations from psychophysical and wavefront-sensing measurements in the different spectral
ranges.

Light Range (nm)

Psychophysical Wavefront-Sensing

Hydrophobic IOL Hydrophilic IOL P Value* Hydrophobic IOL Hydrophilic IOL P Value*

Visible 480–700 1.37 G 0.08 D 1.21 G 0.08 D .003† 0.88 G 0.07 D 0.73 G 0.09 D .004†

NIR 700–950 0.39 G 0.07 D 0.29 G 0.08 D .184
Visible C NIR 480–950 1.27 G 0.09 D 1.02 G 0.13 D .004†

IOL Z intraocular lens; NIR Z near infrared
*Paired-samples t test
†Statisically significant difference (P ! .05)
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DISCUSSION

We measured the longitudinal chromatic aberration
in a wide range of wavelengths using a psychophysi-
cal method and wavefront-sensing at multiple
wavelengthsdboth implemented in the same poly-
chromatic adaptive optics systemdin pseudophakic
eyes of the same patient, 1 eye with the hydrophobic
Podeye IOL and the contralateral eye with the Poday
hydrophilic IOL. The study design minimizes
potential patient bias, particularly in psychophysical
measurements (same patient performs the subjective
best focus settings with either IOL) as well as a direct
comparison of both lower-order aberrations and
HOAs across groups.

We found that the eyes with the hydrophobic IOL
had a small but consistently higher longitudinal chro-
matic aberration than eyes with the hydrophilic IOL
(a difference of 0.16 D and 0.15 D from psychophysical
and wavefront-sensing methods, respectively, in the
visible 480 to 700 nm range). The difference is consis-
tent with the lower Abbe number of the hydrophobic
material. The IOL material potentially has relevance
regarding visual performance as the IOL material af-
fects the chromatic aberration in the eye.

The longitudinal chromatic aberration from the
psychophysical method was consistently higher (P
Z .001) in all eyes than the longitudinal chromatic ab-
erration obtained from wavefront-sensing, by 0.48 D
(35.41%) for the hydrophobic IOL and 0.48 D
(39.43%) for the hydrophilic IOL. Similar differences
were also found in a previous study20 of young
phakic eyes using the same experimental system
(0.61 D, 40.4%). Lower values of longitudinal chro-
matic aberration from the reflectometric than from
psychophysical method had also been reported
earlier. Some studies1,7,39 attributed those differences
to the presence of HOAs, although our previous
study20 discarded this hypothesis by performing
measurements under correction of natural aberra-
tions with adaptive optics, which showed similar
J CATARACT REFRACT SURG -
discrepancies between psychophysical and reflecto-
metric (wavefront-sensing and double-pass–based)
techniques. It is likely that the differences arise by
wavelength-dependent reflectivity of the different
retinal layers. In our previous study,20 we showed
that deviations in the best focus from psychophysical
and reflectometric techniques occurred both at the
short and long range of the spectrum, with a higher
shift in red light than in blue light. We hypothesized
that blue light was reflected anteriorly from
the photoreceptors’ inner segments, approximately
in the retinal nerve fiber layer, and that red light
was reflected behind the photoreceptors, in the
choroid. This is interesting because in red light, the
contribution of the choroidal reflections is large
compared with that of reflections originating in the
inner layers of the retina40 and might explain the
higher shift in red light than in blue light. In any
case, the relative difference in longitudinal chromatic
aberration in eyes with different IOLs remains con-
stant regardless of the measurement technique.

The longitudinal chromatic aberration measured in
the pseudophakic eyes in the current study can be
compared with the longitudinal chromatic aberration
measured in our previous study of young phakics,
using the same methods,20 and for similar wave-
length ranges (Figure 4). For both techniques, we
found that the longitudinal chromatic aberration in
the phakic eyes was higher than in the pseudophakic
eyes. These differences were statistically significant
with both techniques for the hydrophilic IOL,
but only for the wavefront-sensing technique for
the hydrophobic IOL (independent-samples t test):
psychophysical–hydrophilic phakic, P Z .002;
wavefront-sensing–(1) visible, hydrophobic phakic,
P Z .041, hydrophilic phakic, P Z .009; (2) near IR,
hydrophilic phakic, P Z .008; (3) visible C near IR,
hydrophobic phakic, P Z .018, hydrophilic phakic,
P Z .02. The longitudinal chromatic aberration in
these pseudophakic eyes was, on average, similar to
VOL 41, OCTOBER 2015



Figure 4. Longitudinal chromatic aberration
averaged across patients for the hydrophobic
IOL (red solid bars), hydrophilic IOL (red dashed
bars), and phakic eyes (green solid bars) for
spectral ranges in the visible, near IR, and total
spectral ranges, from subjective best focus and
wavefront-sensing. *Statistically significant
(P ! .05) and **highly statistically significant
(P ! .01) differences between pseudophakic
eyes and phakic eyes. Error bars stand for
measurement error for subjective longitudinal
chromatic aberration and intersubject vari-
ability in wavefront-sensing.
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the longitudinal chromatic aberration in normal
phakic eyes, whether measured with the
psychophysical or reflectometry technique, in the
same spectral ranges.

Chromatic aberrations play a major role in the
quality of vision1,29,41,42; however, few studies have
addressed the chromatic properties of the IOLs and
the chromatic aberration of the pseudophakic eyes
in vivo. Our study provides estimates of the longitu-
dinal chromatic aberration measured in a wider
spectral range in the visible and near IR than in pre-
vious studies, using psychophysical and wavefront-
sensing measurements. Figure 5 shows the chromatic
difference of focus found in the current study in com-
parison with in vivo chromatic difference of focus in
the corresponding spectral range from previous
studies of psychophysical and reflectometric tech-
niques with different types of IOLs.27,33,34 In general,
our results fall within the values reported in previous
studies that used both psychophysical and reflecto-
metric techniques, with the data from psychophysical
techniques showing consistently higher longitudinal
J CATARACT REFRACT SURG -
chromatic aberrations than those from reflectometry
techniques.

WHAT WAS KNOWN

� Chromatic aberrations play a major role in the quality of
vision, and the longitudinal chromatic aberration has
been extensively measured in phakic eyes. Most esti-
mates of longitudinal chromatic aberration in pseudo-
phakic eyes come from computations based on the IOL
material Abbe number, and very few come from actual
measurements in patients.
VO
WHAT THIS PAPER ADDS

� There were significant but small differences in the longi-
tudinal chromatic aberration with hydrophobic and hydro-
philic IOLs, the longitudinal chromatic aberration being
consistently smaller with hydrophilic IOLs. The longitudi-
nal chromatic aberration from psychophysical measure-
ments was consistently higher than those from
wavefront-sensing, also in pseudophakic eyes.
Figure 5. Chromatic difference of
focus from the psychophysical
(blue triangles) and wavefront-
sensing (pink circles) measurements
in the current study and other psy-
chophysical (red triangles) and
reflectometry (green circles) data in
the literature. The measured chro-
matic range differed across studies,
and it is indicated by the symbols
in the end of the regression lines.
Data are referred to zero defocus
at 550 nm.
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