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The minimum number of samples necessary to fully characterize the aberration pattern of the eye is a question
under debate in the clinical as well as the scientific community. We performed repeated measurements of ocu-
lar aberrations in 12 healthy nonsurgical human eyes and in 3 artificial eyes, using different sampling pat-
terns (hexagonal, circular, and rectangular with 19 to 177 samples, and 3 radial patterns with 49 sample co-
ordinates corresponding to zeros of the Albrecht, Jacobi, and Legendre functions). For each measurement set
we computed two different metrics based on the root-mean-square (RMS) of difference maps (RMS_Diff) and
the proportional change in the wavefront �W% �. These metrics are used to compare wavefront estimates as
well as to summarize results across eyes. We used computer simulations to extend our results to “abnormal
eyes” (keratoconic, post-LASIK, and post–radial keratotomy eyes). We found that the spatial distribution of the
samples can be more important than the number of samples for both our measured as well as our simulated
“abnormal” eyes. Experimentally, we did not find large differences across patterns except, as expected, for un-
dersampled patterns. © 2007 Optical Society of America

OCIS codes: 330.5370, 330.7310, 330.4300.
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. INTRODUCTION
avefront sensing has become a useful tool to assess the

mage quality of the eye, with applications to both re-
earch and clinical evaluation. Ocular aberrometry has
een used for studying ocular properties as a function of
ccommodation [1], aging [2,3], or refractive error [4], as
ell as for the assessment of refractive correction tech-
iques (refractive surgery [5,6], cataract surgery [7,8],
nd contact lenses [9–11]), or the correction of ocular ab-
rrations to visualize the eye fundus [12–14]. The evalu-
tion of the optical outcomes of refractive surgery has led
o an increasing importance of aberrometry in recent
ears, and commercial aberrometers are now commonly
sed to assist in surgery [15,16].
Most current aberrometry techniques measure the ray

berrations of the eye, i.e., the local slopes of the wave-
ront, by estimating the deviation of the light beams from
reference, either as the light goes into the eye (i.e., laser

ay tracing (LRT) [17] and spatially resolved refractome-
er (SRR) [18]) or out of the eye (i.e., Hartmann–Shack
19]). The wave aberration of the eye is then recon-
tructed from a discrete number of sampling points. This
econstruction can be local [20], modal [21], or a mixture
f both. The most widely used method in ocular aberrom-
try is a modal reconstruction that is based on the expan-
ion of the derivatives of wave aberration as a linear com-
ination of a set of basis functions (most frequently a
ernike polynomial expansion) and a subsequent least-
quares fit of the expansion coefficients to the measured
radients [22].

The actual sampling pattern and density differ be-
ween aberrometers. The lenslets in a Hartmann–Shack
1084-7529/07/092783-14/$15.00 © 2
HS) wavefront sensor are typically arranged in either a
xed rectangular or a hexagonal configuration, and the
umber of samples range from around 50 to more than
5,000 (for instance, the aberrometer Haso3 128, by
magine Eyes, Orsay, France) spots within the dilated pu-
il. Ray-tracing aberrometers (such as LRT or SRR), on
he other hand, sample the pupil sequentially and can use
variable sampling configuration. However, given the se-

uential nature of these devices, high sampling densities
re not typically used to reduce measuring times.
The optimal number of sampling points represents a

rade-off. There has been a tendency to increase the num-
er of lenslets of the HS sensor (i.e., increasing the sam-
ling density) with the aim of improving resolution and
he accuracy of the wavefront reconstruction. However,
maller lenslet diameters decrease the amount of light
aptured by each lenslet and increase the size of the
iffraction-limited spots. Although it is possible to opti-
ize the size of the CCD array and the focal length of the

enslets to gain accuracy (pixels per spot), an excessive
umber of spots can compromise the dynamic range of the
evice, as well as increase the processing time and poten-
ially decrease the reproducibility, due to the lower signal
ntensity. In addition, increasing the number of samples

ay not decrease the variance of the estimates of the
avefront [21] nor the aliasing error [23].
The determination of a sampling pattern with the mini-
um sampling density that provides accurate results is of

ractical importance for sequential aberrometers, since it
ould decrease measurement time, and of general inter-
st to better understand the trade-offs between aberrom-
ters. It is also useful to determine whether there are
007 Optical Society of America



s
l
m

p
s
v
m
r
i
t
t

1
t
m
m
m
g
u
m
p
Z

i
c
m
c
b
c
t
t
t
l
d

b
(
b
p
m
m
b
a
t
s
t
a
p
b
a

e
w
p
c
l
d
a
l
p
h

a
s
s
t
y
i
s
m
p
p
d
d
s

[
p
s
[
t
a
t
a
i
p
p
t
T
d
l
(
d
s
f
t
h
t
w
c
e
p
b
s
t
p
c
d

L
d
r
t
s
w
T
r
s
c
d
o
v
s
m

2784 J. Opt. Soc. Am. A/Vol. 24, No. 9 /September 2007 Llorente et al.
ampling patterns that are better adapted to typical ocu-
ar aberrations, or particular sampling patterns opti-

ized for measurement under specific conditions.
To our knowledge, there has not been a systematic ex-

erimental study investigating whether increasing the
ampling density over a certain number of samples pro-
ides significantly better accuracy in ocular aberration
easurements, or whether alternative sampling configu-

ations would be more efficient. There have been theoret-
cal investigations of sampling configuration, although
he applicability to human eyes should be ultimately
ested experimentally.

The first studies on wavefront estimates date from the
970s. Cubalchini [21] was the first to study the modal es-
imation of the wave aberration from derivative measure-
ents using a least-squares method. He concluded that
odal estimates of the wavefront obtained using this
ethod were sensitive to the number of samples and their

eometry. He advised minimizing the number of samples
sed to estimate a fixed number of terms and taking the
easurements as far from the center of the aperture as

ossible in order to minimize the variance of higher-order
ernike terms.
In 1997, Rios et al. [22] found analytically for HS sens-

ng that the spatial distribution of the nodes of the Albre-
ht cubatures [24] made them excellent candidates for
odal wavefront reconstruction in optical systems with a

entrally obscured pupil. This sampling scheme could also
e a good candidate for ocular aberrations, due to the cir-
ular geometry of the cubature scheme. In addition, as
he Zernike order increases (i.e., higher-order aberra-
ions), the area of the pupil more affected by aberrations
ends to be more peripheral [21,25,26], and therefore ocu-
ar wavefront estimates would potentially benefit from a
enser sampling of the peripheral pupil.
He et al. [18] used numerical simulations to test the ro-

ustness of the fitting technique they used for their SRR
least-square fit to Zernike coefficients) to the interaction
etween orders as well as the error due to the finite sam-
ling aperture. They found that the error could be mini-
ized by extracting the coefficients corresponding to the
aximum complete order possible (considering the num-

er of samples) and by using a relatively large sampling
perture, so that the whole pattern practically covered
he measured extent of the pupil. Although this large
ampling aperture introduced some error due to the use of
he value of the derivatives at the center of the sampling
pertures to perform the fitting, and their rectangular
attern did not provide an adequate sampling for radial
asis functions, their simulation confirmed that the over-
ll effect was relatively small.
In 2003, Burns et al. [27] studied computationally the

ffect of different sampling patterns on measurements of
avefront aberrations of the eye by implementing a com-
lete model of the wavefront processing used with a “typi-
al” HS sensor and modal reconstruction. They also ana-
yzed the effect of using a point estimator for the
erivative at the center of the aperture, versus using the
verage slope across the subaperture, and found that the
atter decreased modal aliasing somewhat but made little
ractical difference for the eye models. Given that the
igher-order aberrations tended to be small, their modal
liasing (leakage of a high order into a lower order) was
ubsequently small. Finally, they found that nonregular
ampling schemes, such as cubatures, were more efficient
han grid sampling when sampling noise was high. One
ear later [28], we compared the aberrations obtained us-
ng different patterns to measure experimentally the
ame eyes, and we applied the previous computational
odel to test some additional patterns. We concluded that

atterns with a very small number of samples failed at re-
roducing the wave aberration, but for human eyes, the
ifferences across the rest of the patterns were of the or-
er of the measurement error. Spatial distribution of the
amples was found to be more relevant than the density.

Recently, Díaz-Santana et al. [29] and Soloviev et al.
23] developed analytical models to test different sam-
ling patterns applied to ocular aberrometry and HS
ensing in astronomy, respectively. Díaz-Santana et al.
29] developed an evaluation model based on matrices
hat included as input parameters the number of samples
nd their distribution (square, hexagonal, or polar lat-
ice), the shape of the subpupil, and the size and irradi-
nce across the pupil (uniform irradiance versus Gauss-
an apodization) regarding the sampling. The other input
arameters were the statistics of the aberrations in the
opulation, the sensor noise, and the estimator used to re-
rieve the aberrations from the aberrometer raw data.
he model of Soloviev et al. [23] used a linear operator to
escribe the HS sensing, including the effects of the lens-
ets array geometry and the demodulation algorithm
modal wavefront reconstruction). When applying this to
ifferent sampling configurations, using the Kolmogorov
tatistics as a model of the incoming wavefront, they
ound that their pattern with 61 randomly spatially dis-
ributed samples gave better results than the regular
exagonal pattern with 91 samples of the same subaper-
ure size (radius=1/11 times the exit pupil diameter),
hich completely covered the extent of the pupil in the

ase of the 91-sample pattern. In these theoretical mod-
ls, an appropriate statistical input is crucial so that their
redictions can be generalized in the population. It has
een recently found [25] that high-order aberration terms
how particular relationships (i.e., positive interactions
hat increase the modulation transfer function over other
otential combinations), suggesting that general statisti-
al models should include these relationships in order to
escribe real aberrations.
In this study, we used a configurable wavefront sensor,

RT, to measure wave aberrations in human eyes, using
ifferent sampling patterns and densities. Hexagonal and
ectangular configurations were chosen because they are
he most commonly used. We also used different radially
ymmetric geometries to test whether these patterns
ere better suited for measuring ocular aberrations.
hese geometries included uniform polar sampling, ar-
anged in a circular pattern, and three patterns corre-
ponding to the zeros of the cubatures of the Albrecht, Ja-
obi, and Legendre equations. We also tested different
ensities for each pattern in order to evaluate the trade-
ff between accuracy and sampling density. To separate
ariability due to biological factors from instrumental is-
ues arising from measurement and processing, we also
ade measurements on artificial eyes. Finally, we used
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oise estimates in human eyes as well as realistic wave
berrations in computer simulations to extend the conclu-
ions to eyes other than normal eyes (referred to in this
aper as healthy eyes with no pathological condition and
hat have not undergone any ocular surgery).

. METHODS
. Laser Ray Tracing
ptical aberrations of the eyes were measured using the
RT technique. In this technique, previously described in
etail [17,30], collimated light rays are sequentially deliv-
red through different positions of the pupil, and the light
eflected off the retina is simultaneously captured by a
ooled CCD camera. Ray aberrations are obtained from
he deviations of the centroids of the aerial images corre-
ponding to each entry pupil location with respect to the
eference (chief ray). These deviations are proportional to
he local derivatives of the wave aberrations, which are
ypically fit using a Zernike polynomial expansion.

We used a second generation of the instrument [31]
here the illumination source was a fiber-coupled diode

aser with a wavelength of 786 nm and a nominal output
ower of 15 mW. The light was attenuated such that ex-
osure was an order of magnitude below safety limits
32].

The distribution and density of the sampling pattern
as under software control. For this study the following

ampling patterns were used: hexagonal (H), evenly dis-
ributed circular (C), rectangular (R), and three radial
atterns with 49 sample coordinates corresponding to ze-
os of the Albrecht (A49), Jacobi (J49), and Legendre
L49) functions. The patterns are shown in Fig. 1. Differ-
nt densities for the hexagonal and circular patterns were
lso used to sample the pupil: 19, 37, and 91 samples over
6 mm pupil. In addition, for the artificial eyes, rectan-

ular patterns with 21, 37, 98, and 177 samples were also
sed. In order to simplify the reading, we will use an ab-
reviated notation throughout the text, where the letter
ndicates the pattern configuration and the number indi-

ig. 1. (Color online) Pupil sampling patterns used in the mea-
urement of the ocular aberrations for this work. (a) The differ-
nt sampling spatial distributions include, from left to right,
qually spaced hexagonal (H), rectangular (R), and circular (C),
istributions and polar distributions with 49 coordinates corre-
ponding to zeros of the Albrecht, Jacobi, and Legendre functions
A49, J49, and L49, respectively). (b) The different sampling den-
ities include patterns with 19, 37, 91, and 177 samples over a
mm pupil. Asterisks indicate those patterns used only for arti-
cial eyes.
ates the number of sampling apertures; for example,
91 stands for a hexagonal pattern with 91 samples.

. Eyes
he three polymethylmethacrylate artificial eyes used in

his work, A1, A2, and A3, were designed and extensively
escribed by Campbell [33]. Nominally, A2 shows only de-
ocus and spherical aberration, while A1 and A3 show dif-
erent amounts of fifth (term Z5

−1, secondary vertical
oma) and sixth (term Z6

2, tertiary astigmatism) Zernike-
rder aberrations.

We also measured 12 healthy nonsurgical eyes (eyes R1
o R12; even numbers indicate left eyes, odd numbers
ight eyes) of 6 young subjects (age=28±2 years). Spheri-
al error ranged from −2.25 to +0.25 diopters (D)
1.08±1.17 D), and third- and higher-order root-mean-
quare (RMS) error from 0.17 to 0.62 �m
0.37 �m±0.15 �m�. The experiment involving human
ubjects fulfilled the tenets of the Declaration of Helsinki,
nd informed consent was obtained prior to the measure-
ents.

. Experimental procedure

. Artificial Eyes
special holder with a mirror was attached to the LRT

pparatus for the measurements on the artificial eyes,
hich allowed the eye to be placed with its optical axis in

he vertical perpendicular to the LRT optical axis and
inimize the variability due to mechanical instability or

he effect of gravity. The pupil of the artificial eye was
ligned to the optical axis and optically conjugated to the
upil of the setup. Focusing was achieved in real time by
inimizing the size of the aerial image for the central ray.
The pattern sequence was almost identical in the three

rtificial eyes: H37, H19, H91, C19, C37, H37_2, C91,
21, R37, R98, H37_3, R177, A49, J49, L49, and H37_4.
owever, for L2 the pattern A49 was the last pattern
easured in the sequence. As a control, identical H37 pat-

erns were repeated throughout the session (indicated by
37, H37_2, H37_3, and H37_4). A measurement session

asted around 40 min in these artificial eyes.

. Human Eyes
upils were dilated with one drop of tropicamide 1% to
chieve pupil diameters of at least 6 mm. A dental impres-
ion bite bar attached to the setup helped the subject to
eep his/her head still during the process, and a fixation
timulus, consisting in a black radial stimulus on a green
ackground, helped the subject to reduce eye movements.
est focus was assessed by the subject while viewing the
xation stimulus and was corrected using a Badal sys-
em. The stimulus was aligned with respect to the optical
xis of the system and focused at infinity to keep the sub-
ect’s accommodation stable during the measurement.

The pupil was monitored (and recorded) during each
un using back illumination, which allowed us to detect
ssues that would affect the measurements, such as tear
lm breakup, blinking, or large eye movements. When
ny of these was detected during a run, the subject was
sked to blink a few times until feeling comfortable again,
est, or fixate more accurately, respectively, and the mea-
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urement was repeated. Custom passive eye-tracking rou-
ines were used to analyze the pupil images (captured si-
ultaneously to retinal images) and to determine the

ffective entry pupil locations as well as to estimate the
ffects of pupil shift variability in the measurements.
can times for these eyes ranged from 1 to 6 s, depending
n the number of samples of the pattern.

In the human measurements we used fewer patterns
H37, H19, H91, C19, C37, C91, A49, J49, L49, and
37_2) to keep measurement sessions within a reason-
ble length of time. To assess variability, each pattern
as repeated five times within a session. In addition, the
37 pattern was repeated at the end of the session H37_2

o evaluate whether there was long-term drift due to fa-
igue or movement. An entire measurement session lasted
round 120 min for both eyes.

. Data Processing

. Wave Aberration Estimates
he centroids of the corresponding aerial images were
omputed similarly to previous publications [17]. Ray ab-
rrations (local derivatives of the wave aberrations) were
tted to a seventh-order Zernike polynomial when the
umber of samples of the sampling pattern allowed (36 or
ore samples), or to the highest order possible. From

ach set of Zernike coefficients we computed the corre-
ponding third- and higher-order (i.e., excluding tilts, de-
ocus, and astigmatism) wave aberration maps and the
orresponding RMS wavefront errors. All processing rou-
ines were written in MATLAB (Mathworks, Natick, Mas-
achusetts). Processing parameters were chosen (as were
lters during the measurement to obtain equivalent in-
ensities at the CCD camera) so that in both human and
rtificial eyes the computation of the centroid was similar
nd not influenced by differences in reflectance of the eye
fundus.”

The wave aberration estimated using the H91 sam-
ling pattern was used as a reference when computing
he metrics, as there is no “gold standard” measurement
or the eyes. This fact can limit the conclusions based on
he metrics that use a reference for comparison. We tested
hether this choice biased our results by checking the ef-

ect of using the other pattern with the highest number of
amples (C91) as a reference. The conclusions would have
een unchanged.

. Wavefront Variability Metrics
e defined two metrics to evaluate differences between

ampling patterns:
RMS_Diff: We obtained a difference pupil map (Diff.
ap) by subtracting the wave aberration for the reference

attern from the wave aberration corresponding to the
attern to be evaluated. RMS_Diff is the RMS of the dif-
erence pupil map computed. A larger RMS_Diff corre-
ponds to a less accurate sampling pattern. For each eye,
e set up a threshold criterion to estimate the differences
ue to factors other than the sampling patterns. This
hreshold was obtained by computing the value of the
etric for maps obtained using the same pattern (H37) at

ifferent times within a session. Differences lower than
he threshold are within the measurement variability.
W%: This is the percentage of the area of the pupil in
hich the wave aberration for the test pattern differs

rom the wave aberration measured using the reference
attern. Wave aberrations were calculated on a 128
128 grid for each of the five repeated measurements for

ach sampling pattern and for the reference. Then, at
ach of the 128�128 points, we computed the probability
hat the differences found between both groups of mea-
urements (for the sampling and for the reference) arose
y chance. Binary maps were generated by setting to one
he areas with probability values below 0.05 and setting
o zero those areas with probability values above 0.05.
hen W% was computed as the number of pixels with
alue one divided by the total number of pixels in the pu-
il, all multiplied by 100. The larger the W%, the less ac-
urate the corresponding sampling pattern. This metric
as applied only for human eyes, where, as opposed to ar-

ificial eyes, variability was not negligible, and repeated
easurements were performed.
Ranking: To summarize the results obtained for all
easured eyes, we performed a procedure that we named

anking. It consists in (1) sorting the patterns, according
o their corresponding metric values, for each eye; (2)
coring them in ascending order, from the most to the
east similar to the reference, i.e., from the smallest to the
reatest value obtained for the metric (from 0, for the ref-
rence, to the maximum number of different patterns: 9
or the human eyes and 15 for the artificial eyes); and (3)
dding the scores for each pattern across eyes. Since this
rocedure is based on the metrics, and therefore uses the
eference, the conclusions obtained will be relative to the
eference.

. Statistical Test
e also performed a statistical analysis, which involved

he application of (1) a hierarchical cluster analysis rep-
esented by a dendrogram plot using average linkage (be-
ween groups), and (2) an analysis of variance (ANOVA;
eneral linear model for repeated measurements, with
he sampling patterns as the only factor) to the Zernike
oefficients obtained for each pattern, followed by a pair-
ise comparison (t-test) to determine, in those cases
here ANOVA indicated significant differences �p�0.05�,
hich patterns were different. The statistical tests were
erformed using SPSS software (SPSS, Inc., Chicago, Illi-
ois).
The aim of the hierarchical cluster analysis was to

roup those patterns producing similar Zernike sets in or-
er to confirm tendencies found in the metrics (i.e., pat-
erns with large metrics values can be considered as
bad,” whereas those with small metrics values can be
onsidered as “good”). The algorithm for this test starts
onsidering each case as a separate cluster and then com-
ines these clusters until there is only one left. In each
tep the two clusters with a minimum Euclidean distance
etween their variables (Zernike coefficients values) are
erged. We performed the analysis eye by eye and also by

ooling the data from all eyes (global) to summarize the
esults. We computed the ANOVA coefficient by coefficient
y pooling the data from all the eyes. When probability
alues were below a threshold of 0.05, i.e., significant dif-



f
c
e

t
c
[
c
c
e
t

3
A

1
F
t
e
t
u
m
t
l
c
r
a

f
t
s

a
p
e
e
h
a
t
s
R
f

2
R
�
e
t
p
t
f
e
t
s
a

F
t
w
t
n
r

Llorente et al. Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. A 2787
erences existed, the pairwise comparison allowed us to
heck to which patterns the coefficients that were differ-
nt corresponded.

When computing the RMS_Diff and W% metrics, only
hird- and higher-order aberrations were considered (i.e.,
oefficients 7 to 36 in the single-indexing OSA notation
34]). However, in the statistical analysis of the Zernike
oefficients, the second order was also considered (coeffi-
ients 4 to 36). In the case of statistical analysis, no ref-
rences were used, and therefore the results are not rela-
ive to any particular sampling pattern.

. RESULTS
. Artificial Eyes

. Wave Aberrations
igure 2 shows the wave aberration maps (W.A. map) and
he difference maps (Diff. map; subtraction of the refer-
nce map from the corresponding aberration map) for the
hird and higher orders corresponding to the 16 patterns
sed to measure artificial eye A3. The wave aberration
ap in the top right-hand corner is that obtained using

he pattern H91, which is used as the reference. To the
eft of the map, the corresponding RMS is indicated. The
ontour lines are plotted every 0.5 �m for the wave aber-
ation maps and 0.1 �m for the difference maps. Positive
nd negative values in the map indicate that the wave-

ig. 2. (Color online) Wave aberration maps for third and highe
he reference) obtained using the different sampling patterns for
ave aberration maps and the difference maps, respectively. Thi

ion and difference maps are indicated below each map. Each pa
umber after H37_ indicates four different repetitions througho
eference (H91) is plotted in the top right-hand corner, with its c
ront is advanced or delayed, respectively, with respect to
he reference. The value below each map is the corre-
ponding RMS.

Qualitatively, the wave aberration maps are similar
mong patterns, except for those corresponding to the
atterns with the fewest samples (H19, C19, and R21). As
xpected, with the undersampled patterns, spherical ab-
rration is predominant and these patterns fail to capture
igher-order defects. These differences among patterns
re more noticeable in the difference maps, which reveal
he highest values for the patterns with the fewest
amples, followed by L49, J49, and C37. As expected, the
MS_Diff values for these six patterns were larger than

or the other patterns.

. Difference Metrics
MS_Diff ranged from 0.06 to 0.46 �m

0.15 �m±0.05 �m� across eyes and patterns. Within each
ye, we set up a threshold to estimate the differences due
o factors other than the sampling patterns. For this pur-
ose, we used repeated runs with H37 at four different
imes within the session. We subtracted the map obtained
or one of the measurements from the map obtained for
ach of the three other measurements. We computed the
hreshold as the RMS (analogous to RMS_Diff) of the re-
ulting three maps. The values obtained for the threshold
veraged across measurements were 0.07 �m±0.01 �m,

ike orders and corresponding difference maps (after subtracting
al eye A3. Contour lines are plotted every 0.5 and 0.1 �m for the
ntour lines indicate positive values. The RMSs for wave aberra-
s labeled according to the nomenclature described in Fig. 1. The
measurement. The wave aberration map corresponding to the

onding RMS to the left of the map.
r Zern
artifici
cker co
ttern i
ut the
orresp
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.09 �m±0.08 �m, and 0.05 �m±0.01 �m for eyes A1, A2,
nd A3, respectively (0.07 �m±0.03 �m averaged across
he three eyes).

Figures 3(a)–3(c) show the values for the metric RMS
Diff obtained for each pattern for artificial eyes A1, A2,
nd A3, respectively. As previously indicated, the larger
he value for RMS_Diff, the less similarity between the
attern and the reference. Within each eye, patterns are
orted by RMS_Diff value in ascending order (from most
o least similar to the reference). The thick horizontal line
n each graph represents the threshold for the corre-
ponding eye, indicating that differences below this
hreshold can be attributed to variability in the measure-
ent. The results of eyes A1 and A3 for RMS_Diff are

imilar: The values for all the patterns are above the cor-
esponding threshold, and the worst patterns (largest
alue of the metric) are those with the smallest number of
amples (H19, C19, and R21), as expected. H37 patterns
177, A49, and C91 were the best patterns for these eyes.

n the case of A2, the values of some of the patterns (H37,
37_2, C37, and H19) were below the threshold, indicat-

ng that the differences were negligible. The ordering of
he patterns for this eye is also different, with H19 and
19 obtaining better results (positions 4 and 6 out of 15,
espectively) than for the other eyes. This is probably ex-
lained by the aberration pattern of this eye, which has
nly defocus and spherical aberration. R21, J49, and L49
re the worst patterns in this eye.

ig. 3. (Color online) Plots (a), (b), and (c) represent the RMS_D
2, and A3, respectively. Larger values of this metric indicate g
orizontal line represents the threshold corresponding to each ey
he differences are due to variability in the measurement and n
rogram obtained from the hierarchical cluster analysis for eyes
ance between patterns, the greater the similarity.
When comparing the outcomes for all three eyes, we
nd the following consistent trends: C91 gave better re-
ults than R98; A49 was better than L49 and J49. For
atterns with 37 samples, we found that H patterns gave
etter results than the R patterns.

. Statistical Tests
e performed a hierarchical cluster analysis for A1, A2,

nd A3 and plotted the resulting dendrogram in Figs.
(d)–3(f), respectively, below the RMS_Diff plot corre-
ponding to each eye. We have framed each significant
luster indicated by the dendrogram. This allowed us to
roup patterns that yielded similar results. The groups of
atterns obtained in the dendrogram for each eye is con-
istent with the RMS_Diff plot. The line type (and color
nline) of the frame indicates whether the group is con-
idered as “good” (solid line), “medium” (dashed line), or
bad” (dotted line), according to the results from RMS
Diff. C37, R37, and R21 differ for A1 and A3. For A2
with only defocus and spherical aberration), H19 and
19 provide results similar to a denser pattern, as found
ith RMS_Diff.
Since the number of artificial eyes was smaller than

he number of sampling patterns, using an ANOVA on the
rtificial eyes was not possible. Instead, we performed a
tudent t-test for paired samples on the three eyes,
ernike coefficient by Zernike coefficient, with the Bonfer-
oni correction (Bonferroni multiple comparison test). Sig-

ues corresponding to each pattern obtained for artificial eyes A1,
differences between the pattern and the reference. The thicker
is metric. Values of RMS_Diff below this threshold indicate that
ifferences between patterns. Plots (d), (e), and (f) show the den-
, and A3, respectively. “Dist.” stands for “distance.” The less dis-
iff val
reater
e for th
ot to d
A1, A2
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ificant differences were found only for coefficient Z5
5 be-

ween the patterns R177 and H37.
In summary, for these eyes, the worst patterns accord-

ng to the RMS_Diff metric were H19, C19, and R21 (least
amples), and H37, R177, A49, and C91 were the best. For
2, with only defocus and spherical aberration, R21, J49,
nd L49 were the worst patterns, although the differences
ith the other patterns were small. Although, as previ-
usly stated, these results are relative to our reference,
he grouping obtained from the metrics is in agreement
ith the groups formed by the hierarchical cluster analy-

is, which does not depend on the reference. Results from
metric that compares individual Zernike terms (Stu-

ent’s t-test with the Bonferroni correction) showed very
ew significant differences.

. Human Eyes

. Wave Aberrations
igure 4 (first row) shows third- and higher-order wave
berration maps (W.A.map) and the corresponding RMSs
or each sampling pattern for human eye R12. The con-
our lines are plotted every 0.3 �m. The map in the top
ight-hand corner corresponds to the reference pattern
91. Each map is obtained from an average of four (H19)

o five measurements. Qualitatively, the aberration maps

ig. 4. (Color online) Results obtained for the human eye R12, u
or third- and higher-order aberrations. Second row, correspondi
lotted every 0.3 and 0.15 �m for the wave aberration maps and t
alues. RMSs for wave aberration and difference maps are ind
robability values obtained, point by point, when comparing the w
orresponding to the assessed pattern. Fourth row, regions of the
erent areas). The number below each map indicates the corresp
ignificantly different between the pattern and the reference. The
n the top right-hand corner.
re quite similar across patterns, although those with
ewer samples (H19 and C19) appear less detailed than
he others, as expected.

. Difference Metrics
ifference maps (Diff.map), obtained by subtracting the

eference map from each pattern map, are plotted in the
econd row of Fig. 4, with the corresponding RMS
RMS_Diff) indicated below each map. RMS_Diff ranged
rom 0.04 to 0.38 �m �0.13 �m±0.06 �m� across eyes and
atterns. Using a procedure similar to that for the artifi-
ial eyes, we determined a threshold for RMS_Diff based
n two sets of five consecutive measurements each, ob-
ained at the beginning and at the end of the session us-
ng the H37 pattern (H37 and H37_2, respectively). To
ompute the threshold we subtracted each of the five
ave aberration maps of the H37_2 set from each of the

orresponding wave aberration maps of the H37 set to ob-
ain the corresponding five difference maps. Next, we
omputed the average of the five difference maps. The
MS of the average map represents the threshold.
MS_Diff values below this threshold are attributed to

he variability of the measurement. For example, the
alue of the threshold for the eye in Fig. 4 (R12) was
.15 �m. This means that, in principle, only J49, H19,

he different sampling patterns. First row, wave aberration maps
erence maps (after subtracting the reference). Contour lines are
erence maps, respectively. Thicker contour lines indicate positive
below each map. Third row, probability maps representing the
ont height values obtained using the reference pattern and those
where the significance values were above 0.05 (significantly dif-
value of the metric W%; i.e., the percentage of the pupil that is

nce wave aberration map and its corresponding RMS are located
sing t
ng diff
he diff
icated

avefr
pupil

onding
refere



a
c
t

h
w
l
(
i
t
w

v
p
p
(
c
p
T
v
�
a
m
t
o
t
a
t

m

t
l
c

m
a
c
r
o
s
f
e
e

g
l
v
t
T
W
t
b
d

3
W
e
o
d

F
h
h
e
t

2790 J. Opt. Soc. Am. A/Vol. 24, No. 9 /September 2007 Llorente et al.
nd C19, which had values greater than this, are practi-
ally different from the reference. The most similar pat-
erns were H91, A49, and H37_2.

The mean threshold value that we obtained for all our
uman eyes (mean RMS_Diff for measurements obtained
ith H37) was 0.11 �m±0.04 �m, an order of magnitude

arger than the standard deviation of the RMS [std
RMS)] for the two sets of five repeated measurements us-
ng H37, which was 0.05 �m±0.03 �m. This indicates
hat std(RMS) is less sensitive to differences between
avefronts than RMS_Diff is.
The third row shows maps (Prob.map) representing the

alue of significance obtained point by point when com-
uting the W% metric. The darker areas indicate a higher
robability of a difference. The maps on the fourth row
Sign.map) indicate those points for which the signifi-
ance value is below the threshold ��0.05�; i.e., those
oints that are significantly different from the reference.
he number below each map indicates the corresponding
alue of the W% metric, which ranged from 0.7% to 80%
29% ±13% � across eyes and patterns. We also computed
threshold for this metric, using the two sets of measure-
ents with H37 obtained in each session. For the eye of

he example (R12), we obtained a value for the threshold
f 20.6%. This implies that differences in patterns other
han L49, J49, C37, H19, and C19 (with values for W%
bove the threshold) can be attributed to the variability of
he experiment.

According to this metric, the patterns that differ the
ost from the reference, are C19, H19, C37, and J49. Al-

ig. 5. (Color online) (a), (d) Ranking values for RMS_Diff corre
uman eyes, respectively. (b), (e) Ranking values for W% corres
uman eyes, respectively. (c), (f) Dendrogram corresponding to th
yes, respectively. Solid, dashed, and dotted lines indicate “good,”
ion obtained from the metrics. “Dist.” stands for “distance.”
hough H37_2, C91, and A49 are the patterns most simi-
ar to the reference, the differences are not significant ac-
ording to the threshold.

Figures 5(a) and 5(b) show the results obtained for the
etrics RMS_Diff and W%, respectively, after ranking

cross all the human eyes. The scale for the y axis indi-
ates the value that each pattern was assigned in the
anking. This means that the “best” possible score for the
rdinate �y� would be 12 (for a pattern that was the most
imilar to the reference for each of the 12 eyes). Similarly,
or a pattern being the least similar to the reference for
ach of the 12 eyes, the ordinate value would be 120 (12
yes�10 patterns).

In both graphs, patterns are sorted from smallest to
reatest value of the metric, i.e., from most to least simi-
ar to the reference. The resulting order of the patterns is
ery similar for both metrics, showing that, as expected,
he worst results are obtained for the 19-sample patterns.
he best results are obtained for H91, A49, L49, and H37.
e found that H patterns generally provide better results

han C patterns (for 37 and 19 samples) in the ranking for
oth metrics. Among the 49 sample patterns, J49 pro-
uced the worst results.

. Statistical Tests
e applied the hierarchical cluster analysis to the human

ye data. While we performed the test eye by eye (i.e., we
btained one dendrogram per eye), Fig. 5(c) is a summary
endrogram obtained by pooling the data of all the eyes in

ng to each sampling pattern across the measured and simulated
g to each sampling pattern across the measured and simulated
rchical cluster analysis for the measured and simulated human
um,” and “bad” clusters, respectively, according to the classifica-
spondi
pondin
e hiera
“medi
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he analysis (global). Solid, dashed, and dotted lines indi-
ate “good,” “medium,” and “bad” clusters, respectively,
ccording to the classification obtained from the metrics.
his plot is representative of the plots corresponding to
he individual eyes. The sampling patterns are distrib-
ted in three clusters: C91-A49-H91, J49-L49-C37, and
19-C19, which can be considered as “good,” “medium,”
nd “bad,” respectively. Although this is the trend across
yes, some individual eyes yielded different results, as
hown in Fig. 6. H37 and H37_2 did not form a specific
luster in the global dendrogram and do not follow a spe-
ific trend across the eyes, so they were not included in
he table. The most different eyes were 6, 7 and 8 (where
and 8 belong to the same subject), for which the cluster
19-C19 gets separated out. The least reproducible clus-

er across eyes was C91-A49-H91.
Finally, we performed an ANOVA (general linear model

or repeated measurements) on the Zernike coefficients
btained using the different patterns, followed by a pair-
ise comparison (paired t-test with the Bonferroni correc-

ion) to detect between which patterns differences existed,
hen indicated by ANOVA.
For each pattern, we computed the number of Zernike

oefficients that were significantly different according to
he t-test relative to the total number of possible Zernike
oefficients, i.e., 33 coefficients�9 alternative patterns.
e also computed which coefficient tended to come out

he most statistically different across pairs of patterns,
.e., statistically different across the greatest number of
atterns. The patterns showing the most differences were
19 (4.7%) and H19 (6.4%), and those showing the least
ifferences were H37, H91, C37, and C91 (1.01% each).
ignificant differences were found only for the following
oefficients: Z7

−3 (2.20%), Z7
−1 (3.30%), Z5

−1 (4.40%), Z4
0

5.50%), Z2
0 (12.09%), and Z6

0 (13.19%).

ig. 6. (Color online) Comparison of the classification yielded by
he global hierarchical cluster analysis on the 12 human eyes
ith the classifications yielded by eye-by-eye hierarchical cluster
nalysis for these eyes. The check mark indicates matching be-
ween the results from the global and the individual analyses for
ach particular eye (i.e., the pattern belongs to the same cluster
ndicated by the global analysis), whereas the cross mark means
here is no matching between the results of both analyses (global
nd individual) for that eye. The circle indicates that A49 was
rouped with J49 and L49.
To summarize, similar results were obtained using both
etrics comparing the shape of the wave aberrations

which depends on our reference) in concordance with the
luster analysis (which does not depend on the reference):
91, A49, and H37 were the best patterns, and C19, L49,
nd H37_2 were the worst. However, the differences were
f the order of the variability in most cases. When com-
uting the percentage of differing patterns, those showing
ost differences were C19 and H19, whereas H37, H91,
37, and C91 showed the least differences. Regarding
ernike coefficients, only a few coefficients were signifi-
antly different: Z7

−3, Z7
−1, Z5

−1, Z4
0, Z2

0, and Z6
0.

. DISCUSSION
. Artificial and Human Eyes
rtificial eyes are a good starting point to study differ-
nces in the sampling patterns because they have fewer
ources of variability (only those attributable to the mea-
urement system, such as thermal noise in the CCD, pho-
on noise, etc.) than the human eyes (including also vari-
bility due to the subject such as eye movements or
icrofluctuations of accommodation). We estimated cen-

roiding noise by computing the standard deviation of the
oordinates of the centroids for each sample across differ-
nt repetitions for pattern H37. The mean error (averaged
etween x and y coordinates) was 0.09 mrad for artificial
yes (37 samples and 3 eyes) and 0.34 mrad for human
yes (37 samples and 12 eyes).

RMS_Diff seems to be a good metric for artificial eyes,
ince it provides quantitative differences between the pat-
erns. However, it would be desirable to rely on an objec-
ive independent reference for the computation of this
etric, such as an interferogram. This metric shows that,

or these eyes, patterns with the greatest number of
amples (R177) are not always best (in terms relative to
ur reference, which had only 91 samples) and that spa-
ial distribution of the samples is very important. The dif-
erences in the ordering observed with eye A2 (with no
igher terms than spherical aberration), where patterns
ith less samples gave slightly better results than for the
ther eyes, support the hypothesis that the wave aberra-
ions present in each particular eye affect the optimum
attern, as would be expected from sampling theory.
The different sorting orders for repeated measures of

he same pattern (H37, H37_2, H37_3, and H37_4) indi-
ate that differences of this magnitude are not significant.
owever, the sorting of the different patterns is consis-

ent across metrics and statistics for each eye.
To evaluate whether sample density affects variability,

e computed the standard deviation of RMS_Diff across
yes for each pattern and then sorted the patterns in de-
cending order, according to their corresponding variabil-
ty. We found that the worst patterns (C37, H19, C19, and
21) also showed a larger variability, indicating that they
re less accurate when sampling the aberrations pattern.
Conclusions based on the artificial eyes have the ad-

antage of avoiding biological variability but are re-
tricted because they have aberration structures very dif-
erent from those in human eyes. In our human eyes we
lso find that the RMS_Diff metric allows us to sort the
atterns systematically, and the values of the metric ob-
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ained for human and artificial eyes are of the same order.
he W% metric also was consistent with RMS_Diff, as
ell as being more sensitive.
The ranking procedure was successful at summarizing

nformation obtained from the metrics, since the metric
alues are not as important as sorting the patterns within
ach eye. However, the main drawbacks of this procedure
re that it does not provide information on statistical sig-
ificance (although the results for the same pattern, H37,
btained for different measurements helps to establish
ignificant differences) and that the conclusions are rela-
ive to our reference (obtained under the same conditions
s the assessed patterns), and therefore these rankings
ight be dependent on the chosen reference. These draw-

acks are overcome by the hierarchical cluster analysis,
hich classifies the patterns into different groups accord-

ng to the values of the corresponding vectors of Zernike
oefficients and therefore distinguishes between patterns
ielding different results. It also helps to place the results
btained from the metrics in a more general context.

As with the artificial eyes, the grouping of the sampling
atterns is consistent across metrics. The spatial distribu-
ion of the samples is important, given that some patterns
ith the same number of samples (49) fall into the same
roup or can even be worse than patterns with a lower
umber of samples. Similarly, a “good” sampling pattern
A49) is grouped with patterns with a larger number of
amples. However, for the real eyes, the conclusions are
eaker than for artificial eyes (only differences in pat-

erns with 19 samples are significant), presumably be-
ause biological variability plays a major role.

Overall, the undersampling patterns C19 and H19
ere consistently among the most variable patterns, and

his was confirmed by the ANOVA for Zernike coefficients.
e also did not have a problem with long-term drift, since

nal H37 measurements were not more variable than the
tandard measurements.

We have found that measurement errors in human eyes
revented us from finding statistically significant differ-
nces between most sampling patterns. However, stan-
ard deviations of repeated measurements of this study
ere less than or equal to those of other studies. The
ean variability across patterns and eyes for our human

yes was 0.02 �m (average standard deviation across
uns of the Zernike coefficient, excluding tilts and piston)
or Zernike coefficients. This value is smaller than those
btained by Moreno-Barriuso et al. [30] on one subject
easured with an earlier version of the LRT system

0.06 �m� with a HS sensor �0.07 �m� and a SRR
0.08 �m�, and it is smaller than those obtained by Mar-
os et al. [35], using the same LRT device (0.07 �m
or 60 eyes) and a different HS sensor (0.04 �m for 11
yes). A similar value �0.02 �m� is obtained when comput-
ng the average of the standard deviation of the Zernike
oefficients (excluding piston and tilts) corresponding to
he eye reported by Davies et al. [36] using a HS sensor.
he negligible contribution of random pupil shifts during
he measurements on the wave aberration measurement
nd sampling pattern analysis was further studied by ex-
mining the effective entry pupils obtained from passive
ye-tracking analysis. We selected the most variable set of
eries (according to the standard deviation of the RMS
avefront error and the standard deviation of the Zernike
oefficients across series, respectively), which corre-
ponded to eyes 1 (H19) and 2 �H37_2�, respectively. We
ound that absolute random pupil shifts across the mea-
urements were less than 0.17 mm for coordinate x and
.11 mm for coordinate y. The mean shift of the pupil
rom the optical axis (i.e., centration errors, to which both
equential and nonsequential aberrometers can be
qually subject), was in general larger than random
ariations. We compared the estimates of the wave aber-
ations obtained using the nominal entry pupils with re-
pect to those obtained using the actual pupil coordinates
obtained from passive eye-tracking routines). When pu-
il shifts were accounted for, measurement variability re-
ained practically constant both in terms of RMS stan-

ard deviation (from 0.09 to 0.07 �m and from 0.14 to
.13 �m for eyes 1 and 2, respectively) and in terms of the
verage standard deviation of the Zernike coefficients
from 0.06 to 0.05 �m and from 0.03 to 0.03 �m, for eyes 1
nd 2, respectively). On the other hand, the differences
etween the average RMS using nominal or actual entry
ocations (0.51 versus 0.49 �m for eye 1 and 0.61 versus
.59 �m for eye 2) are negligible. Also, RMS_Diff values
using the wave aberrations with nominal entry locations
s a reference, and wave aberrations with the actual
ntry locations as a test), 0.02 �m±0.01 �m for eye 1
mean±std across repeated measurements for the same
attern) and 0.04 �m±0.02 �m for eye 2 are below the
hreshold for these eyes.

. Numerical Simulations
e have learned from artificial eyes that sampling pat-

erns with a small number of samples (19) are good at
ampling aberration patterns with no higher-order terms
eye A2). When analyzing our ranking results on normal
uman eyes, remarkable differences were found only in
he patterns with a small number of samples. This is due
o the presence of higher-order aberrations and a larger
easurement variability in these eyes.
Due to the lack of a “gold standard” measurement,

here are some issues that have not been addressed in the
xperimental part of this work, such as the following: (1)
oes the magnitude of some particular aberrations deter-
ine a specific pattern as more suitable than others for

ampling that particular eye? (2) Will eyes with aberra-
ion terms above the number of samples be properly char-
cterized using the different patterns? (3) Will measure-
ents in eyes with aberration terms of magnitude larger

han that of normal eyes yield different results?
We have used computer simulations as a tool to address

hese issues. Simulations were performed as follows: We
rst assumed a “true” aberration pattern for a simulated
ye, which was basically a set of Zernike coefficients (ei-
her 37 or 45 terms). From this true aberration pattern, a
avefront was computed as the “true” wavefront. The

imulation then involved sampling the wavefront. The
ampling was performed by computing a sampling pat-
ern (sample location and aperture size) and computing
he wavefront slopes across the sampling aperture. Noise
as then introduced into the slope estimates. For this

imulation, we used the noise values estimated from the
ctual wavefront measurements described above. While
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he simulation software can include light intensity and
entroiding accuracy, for the current simulations it was
eemed most important to set the variability of the cen-
roid determinations to experimentally determined val-
es. Once a new set of centroids was computed for each
ample, a wavefront was estimated using a standard
east-squares estimation procedure identical to that de-
cribed above for the actual data, fitting up to either 17
for the Hex19 and Circ19) or 37 terms. We calculated 25
imulated wavefronts for each simulated condition, al-
hough only the first five sets of Zernike coefficients were
sed to compute the metrics in order to reproduce the
ame conditions as in the measurements.

First, we verified that the results obtained from the
imulations were realistic by using the Zernike coeffi-
ients of the real eyes (obtained with the H91 pattern).
e sampled the aberrations obtained with the same sam-

ling patterns used in the measurements of our human
yes as well as with R177 (previously used in the artificial
yes), and we obtained the corresponding coefficients. Fi-
ally, we applied the different metrics and ranking to
hese simulated coefficients, sorting the patterns for each
etric across all eyes. We also used the hierarchical clus-

er analysis on these simulated data eye by eye.
Figures 5(d) and 5(e) show the ranking plot for

MS_Diff and for W%, respectively, and Fig. 5(f) shows
he dendrogram corresponding to the global hierarchical
luster analysis (i.e., including all the eyes) for the simu-
ated human eyes. The results of the global hierarchical
luster analysis are presented, similar to the actual data,
s a summary of the results for each of the 12 simulated
yes. Solid, dashed, and dotted lines indicate “good,” “me-
ium,” and “bad” clusters, respectively, as previously de-
cribed. Trends similar to those of the measured human
yes are seen, with the main clusters repeating, although
ndividual pairings changed. As with the measured hu-

an eyes, shown in Fig. 5(c), H91, C91, and A49 are in
he “good” group; J49 and L49 belong to the “medium”
roup; and H37, H19, and C19, although not clearly
ithin any group, appear in borderline positions. As ex-
ected, the pattern R177 was included in the “good”
roup. We conclude that the simulations provide a good
stimate of the performance of the repeated measure-
ents using different sampling schemes in real normal

yes.
Once we had validated our simulations in normal

healthy, nonsurgical) human eyes, we applied the simu-
ations to three different sets of Zernike coefficients corre-
ponding to the following: (1) A keratoconus eye measured
sing LRT with H37 as a sampling pattern [37]. The main
ptical feature of these eyes is a larger magnitude of
hird-order terms (mainly coma) than in normal eyes.
MS for third- and higher-order aberrations was
.362 �m for the original coefficients used to perform the
imulation. (2) A post-LASIK eye measured using LRT
ith H37 as a sampling pattern [38]. These eyes show an

ncrease of spherical aberration toward positive values
nd a larger amount of coma after the surgery. RMS for
hird- and higher-order aberrations was 2.671 �m for the
riginal coefficients used to perform the simulation. (3) An
ye with aberrations higher than the seventh order. In
his case we used the coefficients up to the seventh order
orresponding to the previous post-LASIK eye and added
.1 �m on the coefficient Z8

8, simulating a post–radial
eratotomy (post-RK) eye. RMS for third- and higher-
rder aberrations was 2.672 �m for the original coeffi-
ients used to perform the simulation.

Figure 7 shows the results obtained for these three
yes, for RMS_Diff [(a), (d), and (g)], for W% [(b), (e), and
h)], and for the hierarchical cluster analysis [(c), (f), and
i)]. The results were repetitive across the three eyes, with
177, H37, and A49 resulting as the best patterns, and
19 as the worst, for both RMS_Diff and W%. The reason
hy in this case H37 is consistently classified as the best
attern is apparently because this is the pattern used to
erform the original measurement of aberrations from
hich the wavefront was computed for the simulations.
e should note that the values for RMS_Diff for the kera-

oconic eye were smaller (the three first patterns were not
bove the threshold for RMS_Diff) compared with the
ther two eyes, indicating that differences from the refer-
nce pattern were smaller. The fact that most of the met-
ic values are above the threshold indicates that in these
yes differences are not attributable to variability (al-
hough it should be noted that the variability values used
n the simulations were obtained from normal eyes and
hat they may be smaller than those corresponding to
athological/surgical eyes). The cluster analysis results
re similar across the three eyes, with the exception of
19, which for the surgical eyes is close to the “good” pat-

erns group. This may be due to the predominance of
pherical aberration, characteristic of these eyes

Although the values of the metrics are larger for these
pathological” eyes, the conclusions obtained from our
eal eyes seem applicable to eyes with greater amounts of
berrations: Even though patterns with more samples
end to give better results, the spatial distribution of the
amples is important. While a large number of samples
elps (R177), the correct pattern at lower sampling was
ore efficient (A49, H91) for eyes dominated by some spe-

ific aberrations.
We should note that the conclusions related to patho-

ogical eyes displayed in this section are obtained from
imulations results and should be regarded as a prelimi-
ary approximation to the study of sampling pattern in
athological eyes, which should include experimental
ata.

. Comparison with Previous Literature
he analytical model of Díaz-Santana et al. [29], previ-
usly described in the introduction, allowed them to test
heoretically different sampling patterns using as a met-
ic the RMS error introduced in wavefront measurements
y the different geometries. This model uses as an input
he second-order statistics of the population, and hence it
s bound to include the interactions reported by McLellan
t al. [25], as long as the population sample and number
f Zernike terms are large enough to reflect all possible
nteractions. The model was applied to an apparently
oung population of 93 eyes, with aberration terms up to
he fourth order, to compare square, hexagonal, and polar
eometries. They found that the sampling density did not
nfluence the RMS error much for hexagonal and square
rids, whereas lower sampling densities produced a
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maller error for polar grids. When comparing grids with
ifferent geometries and similar densities, they found, in
greement with our results, that the polar geometry was
est (in terms of smaller error), followed by the hexagonal
rid. Differences in performance between patterns de-
reased as density increased.

The analytic model [23] of Kolmogorov’s statistics pro-
osed by Soloviev et al. indicates that random sampling
roduces better results than regularly spaced ones. They
lso reported that aliasing error increases dramatically
or regular samplings for fits reconstructing more modes,
hereas the associated error of the HS sensor was

maller for irregular masks (with 61 subapertures of 1/11
f the pupil diameter size), probably because an irregular
eometry helps to avoid cross coupling. Our experimental
tudy supports their conclusions that simply increasing
he number of samples does not necessarily decrease the
rror of measurement and that sampling geometry is im-
ortant.
In the current study, we used the Zernike modal fitting

o represent the wave aberration because it is the stan-
ard for describing ocular aberrations. Smolek and Klyce
39] questioned the suitability of Zernike modal fitting for
epresenting aberrations in eyes with a high amount of
berrations (keratoconus and postkeratoplasty eyes), re-
orting that the fit error had influenced the subject’s best

ig. 7. (Color online) Results obtained for the keratoconic [first r
ow: (g), (h), (i)] eyes. The first [(a), (d), (g)] and second columns
pectively, corresponding to each pattern. The thicker horizontal
ponding metric. Values of the metric below this threshold indicat
o differences between patterns. The third column [(c), (f), (i)] sho
HCA) for the keratoconic, post-LASIK, and post-RK eyes. “Dist
imilarity between them. Solid, dashed, and dotted lines indica
lassification obtained from the metrics.
orrected spectacle visual acuity. Marsack et al. [40] revis-
ted this question recently, concluding that only in cases
f severe keratoconus (with a maximum corneal curva-
ure over 60 D) did Zernike modal fitting fail to represent
isually important aberrations. In the current study we
id not address this, but rather restricted our conditions
o ones more commonly encountered and for which
ernike modal fitting is expected to be adequate.

. CONCLUSIONS
e summarize our conclusions as follows:
(1) Comparison of optical aberrations of healthy non-

urgical human and artificial eyes measured using differ-
nt sampling patterns allows us to examine the adequacy
f two spatial metrics, the RMS of difference maps and
he proportional change in the wavefront �W% �, to com-
are estimates of aberrations across sampling schemes.
(2) For artificial eyes, there is an interaction of the ab-

rrations present and the ability of a given spatial sam-
ling pattern to reliably measure the aberrations. Simply
ncreasing the number of samples was not always as ef-
ective as choosing a better sampling pattern.

(3) Moderate density sampling patterns based on the
ero of Albrecht’s cubature (A49) or hexagonal sampling
erformed relatively well.

, (b), (c)], post-LASIK [second row: (d), (e), (f)], and post-RK [third
e), (h)] show the results for the metrics RMS_Diff and W%, re-
epresents the threshold corresponding to each eye for the corre-
the differences are due to variability in the measurement and not

dendrograms corresponding to the hierarchical cluster analysis
ds for “distance.” The less distance between patterns, the more
d,” “medium,” and “bad” clusters, respectively, according to the
ow: (a)
[(b), (
line r

e that
ws the
.” stan
te “goo
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(4) For normal human eyes, individual variability in lo-
al slope measurements was larger than the sampling ef-
ects except, as expected, for undersampling patterns
H19 and C19). However, in these eyes we also found that
he spatial distribution of the sampling can be more im-
ortant than the number of samples: A49 and H37 were a
ood compromise between accuracy and density.

(5) The numerical simulations are a useful tool to as-
ess a priori the performance of different sampling pat-
erns when measuring specific aberration patterns, since
n general the results are similar to those found for our

easured normal human eyes.

CKNOWLEDGMENTS
he authors thank the volunteer subjects for this study

or their patience and collaboration, Laura Barrios for her
elpful assistance with statistics, and Javier Portilla and
afael Redondo for their helpful assistance with image
rocessing for pupil tracking. This research was sup-
orted in part by National Institutes of Health, USA,
rant EY04395 (Burns); Ministerio de Educación y Cien-
ia, Spain, grant FIS2005-04382; and the European
oung Investigators (EURYI) Award, EUROHORCs-ESF
Marcos).

EFERENCES
1. D. Atchison, M. Collins, C. Wildsoet, J. Christensen, and M.

Waterworth, “Measurement of monochromatic ocular
aberrations of human eyes as a function of accommodation
by the Howland aberroscope technique,” Vision Res. 35,
313–323 (1995).

2. R. Calver, M. Cox, and D. Elliott, “Effect of aging on the
monochromatic aberrations of the human eye,” J. Opt. Soc.
Am. A 16, 2069–2078 (1999).

3. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland,
“Changes in corneal wavefront aberrations with aging,”
Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

4. W. N. Charman, “Aberrations and myopia,” Ophthalmic
Physiol. Opt. 25, 285–301 (2005).

5. T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke,
“Ocular optical aberrations after photorefractive
keratectomy for myopia and myopic astigmatism,” Arch.
Ophthalmol. (Chicago) 118, 17–21 (2000).

6. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R.
Navarro, L. Llorente, and S. Barbero, “Ocular aberrations
before and after myopic corneal refractive surgery: LASIK-
induced changes measured with laser ray tracing,” Invest.
Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

7. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby,
and P. Artal, “Corneal optical aberrations and retinal
image quality in patients in whom monofocal intraocular
lenses were implanted,” Arch. Ophthalmol. (Chicago) 120,
1143–1151 (2002).

8. S. Barbero, S. Marcos, and I. Jimenez-Alfaro, “Optical
aberrations of intraocular lenses measured in vivo and
in vitro,” J. Opt. Soc. Am. A 20, 1841–1851 (2003).

9. X. Hong, N. Himebaugh, and L. Thibos, “On-eye evaluation
of optical performance of rigid and soft contact lenses,”
Optom. Vision Sci. 78, 872–880 (2001).

0. J. A. Martin and A. Roorda, “Predicting and assessing
visual performance with multizone bifocal contact lenses,”
Optom. Vision Sci. 80, 812–819 (2003).

1. C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos,
“On-eye measurement of optical performance of rigid gas
permeable contact lenses based on ocular and corneal
aberrometry,” Optom. Vision Sci. 80, 115–125 (2003).
2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal
vision and high-resolution retinal imaging through
adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).

3. A. Roorda, F. Romero-Borja, I. Donnelly, W. J. H. Queener,
T. J. Hebert, and M. C. W. Campbell, “Adaptive optics
scanning laser ophthalmoscopy,” Opt. Express 10, 405–412
(2002).

4. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bará, “Contrast
improvement for confocal retinal imaging using phase
correcting plates,” Opt. Lett. 27, 400–402 (2002).

5. M. Mrochen, M. Kaemmerer, and T. Seiler, “Clinical results
of wavefront-guided laser in situ keratomileusis 3 months
after surgery,” J. Cataract Refractive Surg. 27, 201–207
(2001).

6. R. Nuijts, V. A. Nabar, W. J. Hament, and F. Eggink,
“Wavefront-guided versus standard laser in situ
keratomileusis to correct low to moderate myopia,” J.
Cataract Refractive Surg. 28, 1907–1913 (2002).

7. R. Navarro and M. A. Losada, “Aberrations and relative
efficiency of light pencils in the living human eye,” Optom.
Vision Sci. 74, 540–547 (1997).

8. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns,
“Measurement of the wave-front aberration of the eye by a
fast psychophysical procedure,” J. Opt. Soc. Am. A 15,
2449–2456 (1998).

9. J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective
measurement of wave aberrations of the human eye with
the use of a Hartmann–Shack wave-front sensor,” J. Opt.
Soc. Am. A 11, 1949–1957 (1994).

0. W. H. Southwell, “Wave-front estimation from wave-front
slope measurements,” J. Opt. Soc. Am. 70, 998–1006
(1980).

1. R. Cubalchini, “Modal wave-front estimation from phase
derivate measurements,” J. Opt. Soc. Am. 69, 972–977
(1979).

2. S. Rios, E. Acosta, and S. Bara, “Hartmann sensing with
Albrecht grids,” Opt. Commun. 133, 443–453 (1997).

3. O. Soloviev and G. Vdovin, “Hartmann–Shack test with
random masks for modal wavefront reconstruction,” Opt.
Express 13, 9570–9584 (2005).

4. S. Bará, S. Ríos, and E. Acosta, “Integral evaluation of the
modal phase coefficients in curvature sensing: Albrecht’s
cubatures,” J. Opt. Soc. Am. A 13, 1467–1474 (1996).

5. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns,
“Effects of interactions among wave aberrations on optical
image quality,” Vision Res. 46, 3009–3016 (2006).

6. R. A. Applegate, E. J. Sarver, and V. Khemsara, “Are all
aberrations equal?” J. Refract. Surg. 18, S556–S562
(2002).

7. S. A. Burns, J. S. McLellan, and S. Marcos, “Sampling
effects on measurements of wavefront aberrations of the
eye,” Invest. Ophthalmol. Visual Sci. Suppl. 2, 44, U463
(2003).

8. L. Llorente, C. Dorronsoro, S. A. Burns, and S. Marcos,
“Influence of pupil sampling and density on ocular wave
aberration measurements,” presented at the Second
International Topical Meeting on Physiological Optics,
Granada, Spain (European Optical Society), September
20–23, 2004. http://www.ugr.es/~phoeos04/proceeding.pdf.

9. L. Diaz-Santana, G. Walker, and S. X. Bara, “Sampling
geometries for ocular aberrometry: a model for evaluation
of performance,” Opt. Express 13, 8801–8818 (2005).

0. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A.
Burns, “Comparing laser ray tracing, spatially resolved
refractometer and Hartmann–Shack sensor to measure the
ocular wavefront aberration,” Optom. Vision Sci. 78,
152–156 (2001).

1. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S.
Marcos, “Myopic versus hyperopic eyes: axial length,
corneal shape and optical aberrations,” J. Vision 4, 288–298
(2004).

2. American National Standards Institute, “American
National Standard for the safe use of lasers,” Standard
Z-136.1-1993 (The Laser Institute of America, 1993).

3. C. E. Campbell, “A test eye for wavefront eye refractors,” J.
Cataract Refractive Surg. 21, 127–140 (2005).



3

3

3

3

3

3

4

2796 J. Opt. Soc. Am. A/Vol. 24, No. 9 /September 2007 Llorente et al.
4. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H.
Webb, and V. S. T. Members, “Standards for reporting the
optical aberrations of eyes,” in Vision Science and Its
Applications, Vol. 35 of 2000 OSA Trends in Optics and
Photonics Series (Optical Society of America, 2000), pp.
110–130.

5. S. Marcos, L. Díaz-Santana, L. Llorente, and D. C., “Ocular
aberrations with ray tracing and Shack–Hartmann
wavefront sensors: Does polarization play a role?” J. Opt.
Soc. Am. A 19, 1063–1072 (2002).

6. N. Davies, L. Diaz-Santana, and D. Lara-Saucedo,
“Repeatability of ocular wavefront measurement,” Optom.
Vision Sci. 80, 142–150 (2003).

7. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-
Barriuso, “Validation of the estimation of corneal
aberrations from videokeratography in keratoconus,” J.
Refract. Surg. 18, 263–270 (2002).

8. S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves,
“Optical response to LASIK for myopia from total and
corneal aberrations,” Invest. Ophthalmol. Visual Sci. 42,
3349–3356 (2001).

9. M. K. Smolek and S. D. Klyce, “Zernike polynomial fitting
fails to represent all visually significant corneal
aberrations,” Invest. Ophthalmol. Visual Sci. 44,
4676–4681 (2003).

0. J. D. Marsack, K. Pesudovs, E. J. Sarver, and R. A.
Applegate, “Impact of Zernike-fit error on simulated high-
and low-contrast acuity in keratoconus: implications for
using Zernike-based corrections,” J. Opt. Soc. Am. A 23,
769–776 (2006).


