Llorente et al.

Effect of sampling on real ocular aberration
measurements

1, 1 1 2
Lourdes Llorente,"* Susana Marcos,' Carlos Dorronsoro,' and Stephen A. Burns

Unstituto de Optica “Daza de Valdés,” Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 121,
28006 Madrid, Spain
%School of Optometry, Indiana University, Bloomington, Indiana 47405, USA
*Corresponding author: Lourdes.lle@io.cfmac.csic.es

Received December 5, 2006; revised March 22, 2007; accepted March 26, 2007;
posted April 18, 2007 (Doc. ID 77642); published August 8, 2007

The minimum number of samples necessary to fully characterize the aberration pattern of the eye is a question
under debate in the clinical as well as the scientific community. We performed repeated measurements of ocu-
lar aberrations in 12 healthy nonsurgical human eyes and in 3 artificial eyes, using different sampling pat-
terns (hexagonal, circular, and rectangular with 19 to 177 samples, and 3 radial patterns with 49 sample co-
ordinates corresponding to zeros of the Albrecht, Jacobi, and Legendre functions). For each measurement set
we computed two different metrics based on the root-mean-square (RMS) of difference maps (RMS_Diff) and
the proportional change in the wavefront (W%). These metrics are used to compare wavefront estimates as
well as to summarize results across eyes. We used computer simulations to extend our results to “abnormal
eyes” (keratoconic, post-LASIK, and post-radial keratotomy eyes). We found that the spatial distribution of the
samples can be more important than the number of samples for both our measured as well as our simulated
“abnormal” eyes. Experimentally, we did not find large differences across patterns except, as expected, for un-
dersampled patterns. © 2007 Optical Society of America
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1. INTRODUCTION

Wavefront sensing has become a useful tool to assess the
image quality of the eye, with applications to both re-
search and clinical evaluation. Ocular aberrometry has
been used for studying ocular properties as a function of
accommodation [1], aging [2,3], or refractive error [4], as
well as for the assessment of refractive correction tech-
niques (refractive surgery [5,6], cataract surgery [7,8],
and contact lenses [9-11]), or the correction of ocular ab-
errations to visualize the eye fundus [12—-14]. The evalu-
ation of the optical outcomes of refractive surgery has led
to an increasing importance of aberrometry in recent
years, and commercial aberrometers are now commonly
used to assist in surgery [15,16].

Most current aberrometry techniques measure the ray
aberrations of the eye, i.e., the local slopes of the wave-
front, by estimating the deviation of the light beams from
a reference, either as the light goes into the eye (i.e., laser
ray tracing (LRT) [17] and spatially resolved refractome-
ter (SRR) [18]) or out of the eye (i.e., Hartmann—Shack
[19]). The wave aberration of the eye is then recon-
structed from a discrete number of sampling points. This
reconstruction can be local [20], modal [21], or a mixture
of both. The most widely used method in ocular aberrom-
etry is a modal reconstruction that is based on the expan-
sion of the derivatives of wave aberration as a linear com-
bination of a set of basis functions (most frequently a
Zernike polynomial expansion) and a subsequent least-
squares fit of the expansion coefficients to the measured
gradients [22].

The actual sampling pattern and density differ be-
tween aberrometers. The lenslets in a Hartmann—Shack
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(HS) wavefront sensor are typically arranged in either a
fixed rectangular or a hexagonal configuration, and the
number of samples range from around 50 to more than
15,000 (for instance, the aberrometer Haso3 128, by
Imagine Eyes, Orsay, France) spots within the dilated pu-
pil. Ray-tracing aberrometers (such as LRT or SRR), on
the other hand, sample the pupil sequentially and can use
a variable sampling configuration. However, given the se-
quential nature of these devices, high sampling densities
are not typically used to reduce measuring times.

The optimal number of sampling points represents a
trade-off. There has been a tendency to increase the num-
ber of lenslets of the HS sensor (i.e., increasing the sam-
pling density) with the aim of improving resolution and
the accuracy of the wavefront reconstruction. However,
smaller lenslet diameters decrease the amount of light
captured by each lenslet and increase the size of the
diffraction-limited spots. Although it is possible to opti-
mize the size of the CCD array and the focal length of the
lenslets to gain accuracy (pixels per spot), an excessive
number of spots can compromise the dynamic range of the
device, as well as increase the processing time and poten-
tially decrease the reproducibility, due to the lower signal
intensity. In addition, increasing the number of samples
may not decrease the variance of the estimates of the
wavefront [21] nor the aliasing error [23].

The determination of a sampling pattern with the mini-
mum sampling density that provides accurate results is of
practical importance for sequential aberrometers, since it
would decrease measurement time, and of general inter-
est to better understand the trade-offs between aberrom-
eters. It is also useful to determine whether there are
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sampling patterns that are better adapted to typical ocu-
lar aberrations, or particular sampling patterns opti-
mized for measurement under specific conditions.

To our knowledge, there has not been a systematic ex-
perimental study investigating whether increasing the
sampling density over a certain number of samples pro-
vides significantly better accuracy in ocular aberration
measurements, or whether alternative sampling configu-
rations would be more efficient. There have been theoret-
ical investigations of sampling configuration, although
the applicability to human eyes should be ultimately
tested experimentally.

The first studies on wavefront estimates date from the
1970s. Cubalchini [21] was the first to study the modal es-
timation of the wave aberration from derivative measure-
ments using a least-squares method. He concluded that
modal estimates of the wavefront obtained using this
method were sensitive to the number of samples and their
geometry. He advised minimizing the number of samples
used to estimate a fixed number of terms and taking the
measurements as far from the center of the aperture as
possible in order to minimize the variance of higher-order
Zernike terms.

In 1997, Rios et al. [22] found analytically for HS sens-
ing that the spatial distribution of the nodes of the Albre-
cht cubatures [24] made them excellent candidates for
modal wavefront reconstruction in optical systems with a
centrally obscured pupil. This sampling scheme could also
be a good candidate for ocular aberrations, due to the cir-
cular geometry of the cubature scheme. In addition, as
the Zernike order increases (i.e., higher-order aberra-
tions), the area of the pupil more affected by aberrations
tends to be more peripheral [21,25,26], and therefore ocu-
lar wavefront estimates would potentially benefit from a
denser sampling of the peripheral pupil.

He et al. [18] used numerical simulations to test the ro-
bustness of the fitting technique they used for their SRR
(least-square fit to Zernike coefficients) to the interaction
between orders as well as the error due to the finite sam-
pling aperture. They found that the error could be mini-
mized by extracting the coefficients corresponding to the
maximum complete order possible (considering the num-
ber of samples) and by using a relatively large sampling
aperture, so that the whole pattern practically covered
the measured extent of the pupil. Although this large
sampling aperture introduced some error due to the use of
the value of the derivatives at the center of the sampling
apertures to perform the fitting, and their rectangular
pattern did not provide an adequate sampling for radial
basis functions, their simulation confirmed that the over-
all effect was relatively small.

In 2003, Burns et al. [27] studied computationally the
effect of different sampling patterns on measurements of
wavefront aberrations of the eye by implementing a com-
plete model of the wavefront processing used with a “typi-
cal” HS sensor and modal reconstruction. They also ana-
lyzed the effect of using a point estimator for the
derivative at the center of the aperture, versus using the
average slope across the subaperture, and found that the
latter decreased modal aliasing somewhat but made little
practical difference for the eye models. Given that the
higher-order aberrations tended to be small, their modal

Llorente et al.

aliasing (leakage of a high order into a lower order) was
subsequently small. Finally, they found that nonregular
sampling schemes, such as cubatures, were more efficient
than grid sampling when sampling noise was high. One
year later [28], we compared the aberrations obtained us-
ing different patterns to measure experimentally the
same eyes, and we applied the previous computational
model to test some additional patterns. We concluded that
patterns with a very small number of samples failed at re-
producing the wave aberration, but for human eyes, the
differences across the rest of the patterns were of the or-
der of the measurement error. Spatial distribution of the
samples was found to be more relevant than the density.

Recently, Diaz-Santana et al. [29] and Soloviev et al.
[23] developed analytical models to test different sam-
pling patterns applied to ocular aberrometry and HS
sensing in astronomy, respectively. Diaz-Santana et al.
[29] developed an evaluation model based on matrices
that included as input parameters the number of samples
and their distribution (square, hexagonal, or polar lat-
tice), the shape of the subpupil, and the size and irradi-
ance across the pupil (uniform irradiance versus Gauss-
ian apodization) regarding the sampling. The other input
parameters were the statistics of the aberrations in the
population, the sensor noise, and the estimator used to re-
trieve the aberrations from the aberrometer raw data.
The model of Soloviev et al. [23] used a linear operator to
describe the HS sensing, including the effects of the lens-
lets array geometry and the demodulation algorithm
(modal wavefront reconstruction). When applying this to
different sampling configurations, using the Kolmogorov
statistics as a model of the incoming wavefront, they
found that their pattern with 61 randomly spatially dis-
tributed samples gave better results than the regular
hexagonal pattern with 91 samples of the same subaper-
ture size (radius=1/11 times the exit pupil diameter),
which completely covered the extent of the pupil in the
case of the 91-sample pattern. In these theoretical mod-
els, an appropriate statistical input is crucial so that their
predictions can be generalized in the population. It has
been recently found [25] that high-order aberration terms
show particular relationships (i.e., positive interactions
that increase the modulation transfer function over other
potential combinations), suggesting that general statisti-
cal models should include these relationships in order to
describe real aberrations.

In this study, we used a configurable wavefront sensor,
LRT, to measure wave aberrations in human eyes, using
different sampling patterns and densities. Hexagonal and
rectangular configurations were chosen because they are
the most commonly used. We also used different radially
symmetric geometries to test whether these patterns
were better suited for measuring ocular aberrations.
These geometries included uniform polar sampling, ar-
ranged in a circular pattern, and three patterns corre-
sponding to the zeros of the cubatures of the Albrecht, Ja-
cobi, and Legendre equations. We also tested different
densities for each pattern in order to evaluate the trade-
off between accuracy and sampling density. To separate
variability due to biological factors from instrumental is-
sues arising from measurement and processing, we also
made measurements on artificial eyes. Finally, we used
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noise estimates in human eyes as well as realistic wave
aberrations in computer simulations to extend the conclu-
sions to eyes other than normal eyes (referred to in this
paper as healthy eyes with no pathological condition and
that have not undergone any ocular surgery).

2. METHODS

A. Laser Ray Tracing

Optical aberrations of the eyes were measured using the
LRT technique. In this technique, previously described in
detail [17,30], collimated light rays are sequentially deliv-
ered through different positions of the pupil, and the light
reflected off the retina is simultaneously captured by a
cooled CCD camera. Ray aberrations are obtained from
the deviations of the centroids of the aerial images corre-
sponding to each entry pupil location with respect to the
reference (chief ray). These deviations are proportional to
the local derivatives of the wave aberrations, which are
typically fit using a Zernike polynomial expansion.

We used a second generation of the instrument [31]
where the illumination source was a fiber-coupled diode
laser with a wavelength of 786 nm and a nominal output
power of 15 mW. The light was attenuated such that ex-
posure was an order of magnitude below safety limits
[32].

The distribution and density of the sampling pattern
was under software control. For this study the following
sampling patterns were used: hexagonal (H), evenly dis-
tributed circular (C), rectangular (R), and three radial
patterns with 49 sample coordinates corresponding to ze-
ros of the Albrecht (A49), Jacobi (J49), and Legendre
(L49) functions. The patterns are shown in Fig. 1. Differ-
ent densities for the hexagonal and circular patterns were
also used to sample the pupil: 19, 37, and 91 samples over
a 6 mm pupil. In addition, for the artificial eyes, rectan-
gular patterns with 21, 37, 98, and 177 samples were also
used. In order to simplify the reading, we will use an ab-
breviated notation throughout the text, where the letter
indicates the pattern configuration and the number indi-

Hexagonal Rectangular* Circular  Albrecht49 Jacobi49 Legendre 49
(H) (R) (C) (A49) (J49) (L49)

(a) Sampling Spatial Distributions

H19 H37 H91 R177*
(b) Sampling Densities

G Xii2

Fig. 1. (Color online) Pupil sampling patterns used in the mea-
surement of the ocular aberrations for this work. (a) The differ-
ent sampling spatial distributions include, from left to right,
equally spaced hexagonal (H), rectangular (R), and circular (C),
distributions and polar distributions with 49 coordinates corre-
sponding to zeros of the Albrecht, Jacobi, and Legendre functions
(A49, J49, and 149, respectively). (b) The different sampling den-
sities include patterns with 19, 37, 91, and 177 samples over a
6 mm pupil. Asterisks indicate those patterns used only for arti-
ficial eyes.
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cates the number of sampling apertures; for example,
H91 stands for a hexagonal pattern with 91 samples.

B. Eyes

The}‘lchree polymethylmethacrylate artificial eyes used in
this work, A1, A2, and A3, were designed and extensively
described by Campbell [33]. Nominally, A2 shows only de-
focus and spherical aberration, while A1 and A3 show dif-
ferent amounts of fifth (term Z;', secondary vertical
coma) and sixth (term Z2, tertiary astigmatism) Zernike-
order aberrations.

We also measured 12 healthy nonsurgical eyes (eyes R1
to R12; even numbers indicate left eyes, odd numbers
right eyes) of 6 young subjects (age=28+2 years). Spheri-
cal error ranged from -2.25 to +0.25 diopters (D)
(1.08+1.17 D), and third- and higher-order root-mean-
square (RMS) error from 0.17 to 0.62um
(0.37 um+0.15 um). The experiment involving human
subjects fulfilled the tenets of the Declaration of Helsinki,
and informed consent was obtained prior to the measure-
ments.

C. Experimental procedure

1. Artificial Eyes
A special holder with a mirror was attached to the LRT
apparatus for the measurements on the artificial eyes,
which allowed the eye to be placed with its optical axis in
the vertical perpendicular to the LRT optical axis and
minimize the variability due to mechanical instability or
the effect of gravity. The pupil of the artificial eye was
aligned to the optical axis and optically conjugated to the
pupil of the setup. Focusing was achieved in real time by
minimizing the size of the aerial image for the central ray.
The pattern sequence was almost identical in the three
artificial eyes: H37, H19, H91, C19, C37, H37_2, C91,
R21, R37, R98, H37_3, R177, A49, J49, 149, and H37_4.
However, for L2 the pattern A49 was the last pattern
measured in the sequence. As a control, identical H37 pat-
terns were repeated throughout the session (indicated by
H37, H37_2, H37_3, and H37_4). A measurement session
lasted around 40 min in these artificial eyes.

2. Human Eyes
Pupils were dilated with one drop of tropicamide 1% to
achieve pupil diameters of at least 6 mm. A dental impres-
sion bite bar attached to the setup helped the subject to
keep his/her head still during the process, and a fixation
stimulus, consisting in a black radial stimulus on a green
background, helped the subject to reduce eye movements.
Best focus was assessed by the subject while viewing the
fixation stimulus and was corrected using a Badal sys-
tem. The stimulus was aligned with respect to the optical
axis of the system and focused at infinity to keep the sub-
ject’s accommodation stable during the measurement.
The pupil was monitored (and recorded) during each
run using back illumination, which allowed us to detect
issues that would affect the measurements, such as tear
film breakup, blinking, or large eye movements. When
any of these was detected during a run, the subject was
asked to blink a few times until feeling comfortable again,
rest, or fixate more accurately, respectively, and the mea-
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surement was repeated. Custom passive eye-tracking rou-
tines were used to analyze the pupil images (captured si-
multaneously to retinal images) and to determine the
effective entry pupil locations as well as to estimate the
effects of pupil shift variability in the measurements.
Scan times for these eyes ranged from 1 to 6 s, depending
on the number of samples of the pattern.

In the human measurements we used fewer patterns
(H37, H19, H91, C19, C37, C91, A49, J49, L49, and
H37_2) to keep measurement sessions within a reason-
able length of time. To assess variability, each pattern
was repeated five times within a session. In addition, the
H37 pattern was repeated at the end of the session H37_2
to evaluate whether there was long-term drift due to fa-
tigue or movement. An entire measurement session lasted
around 120 min for both eyes.

D. Data Processing

1. Wave Aberration Estimates

The centroids of the corresponding aerial images were
computed similarly to previous publications [17]. Ray ab-
errations (local derivatives of the wave aberrations) were
fitted to a seventh-order Zernike polynomial when the
number of samples of the sampling pattern allowed (36 or
more samples), or to the highest order possible. From
each set of Zernike coefficients we computed the corre-
sponding third- and higher-order (i.e., excluding tilts, de-
focus, and astigmatism) wave aberration maps and the
corresponding RMS wavefront errors. All processing rou-
tines were written in MATLAB (Mathworks, Natick, Mas-
sachusetts). Processing parameters were chosen (as were
filters during the measurement to obtain equivalent in-
tensities at the CCD camera) so that in both human and
artificial eyes the computation of the centroid was similar
and not influenced by differences in reflectance of the eye
“fundus.”

The wave aberration estimated using the H91 sam-
pling pattern was used as a reference when computing
the metrics, as there is no “gold standard” measurement
for the eyes. This fact can limit the conclusions based on
the metrics that use a reference for comparison. We tested
whether this choice biased our results by checking the ef-
fect of using the other pattern with the highest number of
samples (C91) as a reference. The conclusions would have
been unchanged.

2. Wavefront Variability Metrics
We defined two metrics to evaluate differences between
sampling patterns:

RMS_Diff: We obtained a difference pupil map (Diff.
Map) by subtracting the wave aberration for the reference
pattern from the wave aberration corresponding to the
pattern to be evaluated. RMS_Diff is the RMS of the dif-
ference pupil map computed. A larger RMS_Diff corre-
sponds to a less accurate sampling pattern. For each eye,
we set up a threshold criterion to estimate the differences
due to factors other than the sampling patterns. This
threshold was obtained by computing the value of the
metric for maps obtained using the same pattern (H37) at
different times within a session. Differences lower than
the threshold are within the measurement variability.
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W%: This is the percentage of the area of the pupil in
which the wave aberration for the test pattern differs
from the wave aberration measured using the reference
pattern. Wave aberrations were calculated on a 128
X 128 grid for each of the five repeated measurements for
each sampling pattern and for the reference. Then, at
each of the 128 X 128 points, we computed the probability
that the differences found between both groups of mea-
surements (for the sampling and for the reference) arose
by chance. Binary maps were generated by setting to one
the areas with probability values below 0.05 and setting
to zero those areas with probability values above 0.05.
Then W% was computed as the number of pixels with
value one divided by the total number of pixels in the pu-
pil, all multiplied by 100. The larger the W%, the less ac-
curate the corresponding sampling pattern. This metric
was applied only for human eyes, where, as opposed to ar-
tificial eyes, variability was not negligible, and repeated
measurements were performed.

Ranking: To summarize the results obtained for all
measured eyes, we performed a procedure that we named
ranking. It consists in (1) sorting the patterns, according
to their corresponding metric values, for each eye; (2)
scoring them in ascending order, from the most to the
least similar to the reference, i.e., from the smallest to the
greatest value obtained for the metric (from 0, for the ref-
erence, to the maximum number of different patterns: 9
for the human eyes and 15 for the artificial eyes); and (3)
adding the scores for each pattern across eyes. Since this
procedure is based on the metrics, and therefore uses the
reference, the conclusions obtained will be relative to the
reference.

3. Statistical Test

We also performed a statistical analysis, which involved
the application of (1) a hierarchical cluster analysis rep-
resented by a dendrogram plot using average linkage (be-
tween groups), and (2) an analysis of variance (ANOVA;
general linear model for repeated measurements, with
the sampling patterns as the only factor) to the Zernike
coefficients obtained for each pattern, followed by a pair-
wise comparison (¢-test) to determine, in those cases
where ANOVA indicated significant differences (p <0.05),
which patterns were different. The statistical tests were
performed using SPSS software (SPSS, Inc., Chicago, Illi-
nois).

The aim of the hierarchical cluster analysis was to
group those patterns producing similar Zernike sets in or-
der to confirm tendencies found in the metrics (i.e., pat-
terns with large metrics values can be considered as
“bad,” whereas those with small metrics values can be
considered as “good”). The algorithm for this test starts
considering each case as a separate cluster and then com-
bines these clusters until there is only one left. In each
step the two clusters with a minimum Euclidean distance
between their variables (Zernike coefficients values) are
merged. We performed the analysis eye by eye and also by
pooling the data from all eyes (global) to summarize the
results. We computed the ANOVA coefficient by coefficient
by pooling the data from all the eyes. When probability
values were below a threshold of 0.05, i.e., significant dif-
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ferences existed, the pairwise comparison allowed us to
check to which patterns the coefficients that were differ-
ent corresponded.

When computing the RMS_Diff and W% metrics, only
third- and higher-order aberrations were considered (i.e.,
coefficients 7 to 36 in the single-indexing OSA notation
[34]). However, in the statistical analysis of the Zernike
coefficients, the second order was also considered (coeffi-
cients 4 to 36). In the case of statistical analysis, no ref-
erences were used, and therefore the results are not rela-
tive to any particular sampling pattern.

3. RESULTS
A. Artificial Eyes

1. Wave Aberrations

Figure 2 shows the wave aberration maps (W.A. map) and
the difference maps (Diff. map; subtraction of the refer-
ence map from the corresponding aberration map) for the
third and higher orders corresponding to the 16 patterns
used to measure artificial eye A3. The wave aberration
map in the top right-hand corner is that obtained using
the pattern H91, which is used as the reference. To the
left of the map, the corresponding RMS is indicated. The
contour lines are plotted every 0.5 um for the wave aber-
ration maps and 0.1 um for the difference maps. Positive
and negative values in the map indicate that the wave-

Results Eye A3

Patterns: H37
]!

€ 0
e
=1

RMSI (wm)  0.39

RMSp ¢ (um) 0.09
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front is advanced or delayed, respectively, with respect to
the reference. The value below each map is the corre-
sponding RMS.

Qualitatively, the wave aberration maps are similar
among patterns, except for those corresponding to the
patterns with the fewest samples (H19, C19, and R21). As
expected, with the undersampled patterns, spherical ab-
erration is predominant and these patterns fail to capture
higher-order defects. These differences among patterns
are more noticeable in the difference maps, which reveal
the highest values for the patterns with the fewest
samples, followed by 149, J49, and C37. As expected, the
RMS_Diff values for these six patterns were larger than
for the other patterns.

2. Difference Metrics

RMS_Diff  ranged from 0.06 to 0.46 um
(0.15 um £0.05 um) across eyes and patterns. Within each
eye, we set up a threshold to estimate the differences due
to factors other than the sampling patterns. For this pur-
pose, we used repeated runs with H37 at four different
times within the session. We subtracted the map obtained
for one of the measurements from the map obtained for
each of the three other measurements. We computed the
threshold as the RMS (analogous to RMS_Diff) of the re-
sulting three maps. The values obtained for the threshold
averaged across measurements were 0.07 um=+0.01 um,

Ref: H91

RMS: 0.43 um

co1

0.25

R37 R98 H37 3 R177
A K
€50
< |-
2 |,
RMS (um)

0.44

%lo.s
a fos N @C

RMSDIFF(P«m)o.

A49 J49 L49

0.44 0.43

H37_4

0.19 0.08

Fig. 2. (Color online) Wave aberration maps for third and higher Zernike orders and corresponding difference maps (after subtracting
the reference) obtained using the different sampling patterns for artificial eye A3. Contour lines are plotted every 0.5 and 0.1 um for the
wave aberration maps and the difference maps, respectively. Thicker contour lines indicate positive values. The RMSs for wave aberra-
tion and difference maps are indicated below each map. Each pattern is labeled according to the nomenclature described in Fig. 1. The
number after H37_ indicates four different repetitions throughout the measurement. The wave aberration map corresponding to the
reference (H91) is plotted in the top right-hand corner, with its corresponding RMS to the left of the map.
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(Color online) Plots (a), (b), and (c) represent the RMS_ Diff values corresponding to each pattern obtained for artificial eyes A1,

A2, and A3, respectively. Larger values of this metric indicate greater differences between the pattern and the reference. The thicker
horizontal line represents the threshold corresponding to each eye for this metric. Values of RMS_Diff below this threshold indicate that
the differences are due to variability in the measurement and not to differences between patterns. Plots (d), (e), and (f) show the den-
drogram obtained from the hierarchical cluster analysis for eyes Al, A2, and A3, respectively. “Dist.” stands for “distance.” The less dis-

tance between patterns, the greater the similarity.

0.09 um=+0.08 um, and 0.05 um=+0.01 um for eyes Al, A2,
and A3, respectively (0.07 um+0.03 um averaged across
the three eyes).

Figures 3(a)-3(c) show the values for the metric RMS
_Diff obtained for each pattern for artificial eyes Al, A2,
and A3, respectively. As previously indicated, the larger
the value for RMS_Diff, the less similarity between the
pattern and the reference. Within each eye, patterns are
sorted by RMS_Diff value in ascending order (from most
to least similar to the reference). The thick horizontal line
in each graph represents the threshold for the corre-
sponding eye, indicating that differences below this
threshold can be attributed to variability in the measure-
ment. The results of eyes A1l and A3 for RMS_Diff are
similar: The values for all the patterns are above the cor-
responding threshold, and the worst patterns (largest
value of the metric) are those with the smallest number of
samples (H19, C19, and R21), as expected. H37 patterns
R177, A49, and C91 were the best patterns for these eyes.
In the case of A2, the values of some of the patterns (H37,
H37_2, C37, and H19) were below the threshold, indicat-
ing that the differences were negligible. The ordering of
the patterns for this eye is also different, with H19 and
C19 obtaining better results (positions 4 and 6 out of 15,
respectively) than for the other eyes. This is probably ex-
plained by the aberration pattern of this eye, which has
only defocus and spherical aberration. R21, J49, and 1.49
are the worst patterns in this eye.

When comparing the outcomes for all three eyes, we
find the following consistent trends: C91 gave better re-
sults than R98; A49 was better than L49 and J49. For
patterns with 37 samples, we found that H patterns gave
better results than the R patterns.

3. Statistical Tests

We performed a hierarchical cluster analysis for Al, A2,
and A3 and plotted the resulting dendrogram in Figs.
3(d)-3(f), respectively, below the RMS_Diff plot corre-
sponding to each eye. We have framed each significant
cluster indicated by the dendrogram. This allowed us to
group patterns that yielded similar results. The groups of
patterns obtained in the dendrogram for each eye is con-
sistent with the RMS_Diff plot. The line type (and color
online) of the frame indicates whether the group is con-
sidered as “good” (solid line), “medium” (dashed line), or
“bad” (dotted line), according to the results from RMS
_Diff. C37, R37, and R21 differ for A1 and A3. For A2
(with only defocus and spherical aberration), H19 and
C19 provide results similar to a denser pattern, as found
with RMS_Diff.

Since the number of artificial eyes was smaller than
the number of sampling patterns, using an ANOVA on the
artificial eyes was not possible. Instead, we performed a
Student ¢-test for paired samples on the three eyes,
Zernike coefficient by Zernike coefficient, with the Bonfer-
roni correction (Bonferroni multiple comparison test). Sig-
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nificant differences were found only for coefficient Zg be-
tween the patterns R177 and H37.

In summary, for these eyes, the worst patterns accord-
ing to the RMS_Diff metric were H19, C19, and R21 (least
samples), and H37, R177, A49, and C91 were the best. For
A2, with only defocus and spherical aberration, R21, J49,
and L49 were the worst patterns, although the differences
with the other patterns were small. Although, as previ-
ously stated, these results are relative to our reference,
the grouping obtained from the metrics is in agreement
with the groups formed by the hierarchical cluster analy-
sis, which does not depend on the reference. Results from
a metric that compares individual Zernike terms (Stu-
dent’s ¢-test with the Bonferroni correction) showed very
few significant differences.

B. Human Eyes

1. Wave Aberrations

Figure 4 (first row) shows third- and higher-order wave
aberration maps (W.A.map) and the corresponding RMSs
for each sampling pattern for human eye R12. The con-
tour lines are plotted every 0.3 um. The map in the top
right-hand corner corresponds to the reference pattern
H91. Each map is obtained from an average of four (H19)
to five measurements. Qualitatively, the aberration maps

Results Eye R12
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are quite similar across patterns, although those with
fewer samples (H19 and C19) appear less detailed than
the others, as expected.

2. Difference Metrics

Difference maps (Diff.map), obtained by subtracting the
reference map from each pattern map, are plotted in the
second row of Fig. 4, with the corresponding RMS
(RMS_Diff) indicated below each map. RMS_Diff ranged
from 0.04 to 0.38 um (0.13 um+0.06 um) across eyes and
patterns. Using a procedure similar to that for the artifi-
cial eyes, we determined a threshold for RMS_Diff based
on two sets of five consecutive measurements each, ob-
tained at the beginning and at the end of the session us-
ing the H37 pattern (H37 and H37_2, respectively). To
compute the threshold we subtracted each of the five
wave aberration maps of the H37_2 set from each of the
corresponding wave aberration maps of the H37 set to ob-
tain the corresponding five difference maps. Next, we
computed the average of the five difference maps. The
RMS of the average map represents the threshold.
RMS_Diff values below this threshold are attributed to
the variability of the measurement. For example, the
value of the threshold for the eye in Fig. 4 (R12) was
0.15 um. This means that, in principle, only J49, H19,

Ref: H91
RMS: 0.59 um

@@@

W (%): 19.9 55.3 60.6 36.3 10.6 123 32.5 31.6

Fig. 4. (Color online) Results obtained for the human eye R12, using the different sampling patterns. First row, wave aberratlon maps
for third- and higher-order aberrations. Second row, corresponding difference maps (after subtracting the reference). Contour lines are
plotted every 0.3 and 0.15 um for the wave aberration maps and the difference maps, respectively. Thicker contour lines indicate positive
values. RMSs for wave aberration and difference maps are indicated below each map. Third row, probability maps representing the
probability values obtained, point by point, when comparing the wavefront height values obtained using the reference pattern and those
corresponding to the assessed pattern. Fourth row, regions of the pupil where the significance values were above 0.05 (significantly dif-
ferent areas). The number below each map indicates the corresponding value of the metric W%j; i.e., the percentage of the pupil that is
significantly different between the pattern and the reference. The reference wave aberration map and its corresponding RMS are located
in the top right-hand corner.
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Fig. 5. (Color online) (a), (d) Ranking values for RMS_Diff corresponding to each sampling pattern across the measured and simulated

human eyes, respectively. (b), (e) Ranking values for W% corresponding to each sampling pattern across the measured and simulated
human eyes, respectively. (c), (f) Dendrogram corresponding to the hierarchical cluster analysis for the measured and simulated human
eyes, respectively. Solid, dashed, and dotted lines indicate “good,” “medium,” and “bad” clusters, respectively, according to the classifica-

tion obtained from the metrics. “Dist.” stands for “distance.”

and C19, which had values greater than this, are practi-
cally different from the reference. The most similar pat-
terns were H91, A49, and H37_2.

The mean threshold value that we obtained for all our
human eyes (mean RMS_Diff for measurements obtained
with H37) was 0.11 um+0.04 um, an order of magnitude
larger than the standard deviation of the RMS [std
(RMS)] for the two sets of five repeated measurements us-
ing H37, which was 0.05 um=0.03 um. This indicates
that std(RMS) is less sensitive to differences between
wavefronts than RMS_Diff is.

The third row shows maps (Prob.map) representing the
value of significance obtained point by point when com-
puting the W% metric. The darker areas indicate a higher
probability of a difference. The maps on the fourth row
(Sign.map) indicate those points for which the signifi-
cance value is below the threshold (<0.05); i.e., those
points that are significantly different from the reference.
The number below each map indicates the corresponding
value of the W% metric, which ranged from 0.7% to 80%
(29% +13%) across eyes and patterns. We also computed
a threshold for this metric, using the two sets of measure-
ments with H37 obtained in each session. For the eye of
the example (R12), we obtained a value for the threshold
of 20.6%. This implies that differences in patterns other
than L49, J49, C37, H19, and C19 (with values for W%
above the threshold) can be attributed to the variability of
the experiment.

According to this metric, the patterns that differ the
most from the reference, are C19, H19, C37, and J49. Al-

though H37_2, C91, and A49 are the patterns most simi-
lar to the reference, the differences are not significant ac-
cording to the threshold.

Figures 5(a) and 5(b) show the results obtained for the
metrics RMS_Diff and W%, respectively, after ranking
across all the human eyes. The scale for the y axis indi-
cates the value that each pattern was assigned in the
ranking. This means that the “best” possible score for the
ordinate (y) would be 12 (for a pattern that was the most
similar to the reference for each of the 12 eyes). Similarly,
for a pattern being the least similar to the reference for
each of the 12 eyes, the ordinate value would be 120 (12
eyes X 10 patterns).

In both graphs, patterns are sorted from smallest to
greatest value of the metric, i.e., from most to least simi-
lar to the reference. The resulting order of the patterns is
very similar for both metrics, showing that, as expected,
the worst results are obtained for the 19-sample patterns.
The best results are obtained for H91, A49, 1L.49, and H37.
We found that H patterns generally provide better results
than C patterns (for 37 and 19 samples) in the ranking for
both metrics. Among the 49 sample patterns, J49 pro-
duced the worst results.

3. Statistical Tests

We applied the hierarchical cluster analysis to the human
eye data. While we performed the test eye by eye (i.e., we
obtained one dendrogram per eye), Fig. 5(c) is a summary
dendrogram obtained by pooling the data of all the eyes in
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the analysis (global). Solid, dashed, and dotted lines indi-
cate “good,” “medium,” and “bad” clusters, respectively,
according to the classification obtained from the metrics.
This plot is representative of the plots corresponding to
the individual eyes. The sampling patterns are distrib-
uted in three clusters: C91-A49-H91, J49-1.49-C37, and
H19-C19, which can be considered as “good,” “medium,”
and “bad,” respectively. Although this is the trend across
eyes, some individual eyes yielded different results, as
shown in Fig. 6. H37 and H37_2 did not form a specific
cluster in the global dendrogram and do not follow a spe-
cific trend across the eyes, so they were not included in
the table. The most different eyes were 6, 7 and 8 (where
7 and 8 belong to the same subject), for which the cluster
H19-C19 gets separated out. The least reproducible clus-
ter across eyes was C91-A49-H91.

Finally, we performed an ANOVA (general linear model
for repeated measurements) on the Zernike coefficients
obtained using the different patterns, followed by a pair-
wise comparison (paired ¢-test with the Bonferroni correc-
tion) to detect between which patterns differences existed,
when indicated by ANOVA.

For each pattern, we computed the number of Zernike
coefficients that were significantly different according to
the ¢-test relative to the total number of possible Zernike
coefficients, i.e., 33 coefficients X9 alternative patterns.
We also computed which coefficient tended to come out
the most statistically different across pairs of patterns,
i.e., statistically different across the greatest number of
patterns. The patterns showing the most differences were
C19 (4.7%) and H19 (6.4%), and those showing the least
differences were H37, H91, C37, and C91 (1.01% each).
Significant differences were found only for the following
coefficients: Z7% (2.20%), Z7' (3.30%), Z5' (4.40%), ZY
(5.50%), Z3 (12.09%), and Zg (13.19%).

Comparison between GLOBAL and EYE BY EYE

HIERARCHICAL CLUSTER ANALYSIS
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Fig. 6. (Color online) Comparison of the classification yielded by
the global hierarchical cluster analysis on the 12 human eyes
with the classifications yielded by eye-by-eye hierarchical cluster
analysis for these eyes. The check mark indicates matching be-
tween the results from the global and the individual analyses for
each particular eye (i.e., the pattern belongs to the same cluster
indicated by the global analysis), whereas the cross mark means
there is no matching between the results of both analyses (global
and individual) for that eye. The circle indicates that A49 was
grouped with J49 and L49.
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To summarize, similar results were obtained using both
metrics comparing the shape of the wave aberrations
(which depends on our reference) in concordance with the
cluster analysis (which does not depend on the reference):
C91, A49, and H37 were the best patterns, and C19, .49,
and H37 2 were the worst. However, the differences were
of the order of the variability in most cases. When com-
puting the percentage of differing patterns, those showing
most differences were C19 and H19, whereas H37, H91,
C37, and C91 showed the least differences. Regarding
Zernike coefficients, only a few coefficients were signifi-
cantly different: Z7°, Z7%, Z3', Z3, Z3, and Z.

4. DISCUSSION

A. Artificial and Human Eyes

Artificial eyes are a good starting point to study differ-
ences in the sampling patterns because they have fewer
sources of variability (only those attributable to the mea-
surement system, such as thermal noise in the CCD, pho-
ton noise, etc.) than the human eyes (including also vari-
ability due to the subject such as eye movements or
microfluctuations of accommodation). We estimated cen-
troiding noise by computing the standard deviation of the
coordinates of the centroids for each sample across differ-
ent repetitions for pattern H37. The mean error (averaged
between x and y coordinates) was 0.09 mrad for artificial
eyes (37 samples and 3 eyes) and 0.34 mrad for human
eyes (37 samples and 12 eyes).

RMS_Diff seems to be a good metric for artificial eyes,
since it provides quantitative differences between the pat-
terns. However, it would be desirable to rely on an objec-
tive independent reference for the computation of this
metric, such as an interferogram. This metric shows that,
for these eyes, patterns with the greatest number of
samples (R177) are not always best (in terms relative to
our reference, which had only 91 samples) and that spa-
tial distribution of the samples is very important. The dif-
ferences in the ordering observed with eye A2 (with no
higher terms than spherical aberration), where patterns
with less samples gave slightly better results than for the
other eyes, support the hypothesis that the wave aberra-
tions present in each particular eye affect the optimum
pattern, as would be expected from sampling theory.

The different sorting orders for repeated measures of
the same pattern (H37, H37_2, H37_3, and H37_4) indi-
cate that differences of this magnitude are not significant.
However, the sorting of the different patterns is consis-
tent across metrics and statistics for each eye.

To evaluate whether sample density affects variability,
we computed the standard deviation of RMS_Diff across
eyes for each pattern and then sorted the patterns in de-
scending order, according to their corresponding variabil-
ity. We found that the worst patterns (C37, H19, C19, and
R21) also showed a larger variability, indicating that they
are less accurate when sampling the aberrations pattern.

Conclusions based on the artificial eyes have the ad-
vantage of avoiding biological variability but are re-
stricted because they have aberration structures very dif-
ferent from those in human eyes. In our human eyes we
also find that the RMS_Diff metric allows us to sort the
patterns systematically, and the values of the metric ob-
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tained for human and artificial eyes are of the same order.
The W% metric also was consistent with RMS_Diff, as
well as being more sensitive.

The ranking procedure was successful at summarizing
information obtained from the metrics, since the metric
values are not as important as sorting the patterns within
each eye. However, the main drawbacks of this procedure
are that it does not provide information on statistical sig-
nificance (although the results for the same pattern, H37,
obtained for different measurements helps to establish
significant differences) and that the conclusions are rela-
tive to our reference (obtained under the same conditions
as the assessed patterns), and therefore these rankings
might be dependent on the chosen reference. These draw-
backs are overcome by the hierarchical cluster analysis,
which classifies the patterns into different groups accord-
ing to the values of the corresponding vectors of Zernike
coefficients and therefore distinguishes between patterns
yielding different results. It also helps to place the results
obtained from the metrics in a more general context.

As with the artificial eyes, the grouping of the sampling
patterns is consistent across metrics. The spatial distribu-
tion of the samples is important, given that some patterns
with the same number of samples (49) fall into the same
group or can even be worse than patterns with a lower
number of samples. Similarly, a “good” sampling pattern
(A49) is grouped with patterns with a larger number of
samples. However, for the real eyes, the conclusions are
weaker than for artificial eyes (only differences in pat-
terns with 19 samples are significant), presumably be-
cause biological variability plays a major role.

Overall, the undersampling patterns C19 and H19
were consistently among the most variable patterns, and
this was confirmed by the ANOVA for Zernike coefficients.
We also did not have a problem with long-term drift, since
final H37 measurements were not more variable than the
standard measurements.

We have found that measurement errors in human eyes
prevented us from finding statistically significant differ-
ences between most sampling patterns. However, stan-
dard deviations of repeated measurements of this study
were less than or equal to those of other studies. The
mean variability across patterns and eyes for our human
eyes was 0.02 um (average standard deviation across
runs of the Zernike coefficient, excluding tilts and piston)
for Zernike coefficients. This value is smaller than those
obtained by Moreno-Barriuso et al. [30] on one subject
measured with an earlier version of the LRT system
(0.06 um) with a HS sensor (0.07 um) and a SRR
(0.08 um), and it is smaller than those obtained by Mar-
cos et al. [35], using the same LRT device (0.07 um
for 60 eyes) and a different HS sensor (0.04 um for 11
eyes). A similar value (0.02 um) is obtained when comput-
ing the average of the standard deviation of the Zernike
coefficients (excluding piston and tilts) corresponding to
the eye reported by Davies et al. [36] using a HS sensor.
The negligible contribution of random pupil shifts during
the measurements on the wave aberration measurement
and sampling pattern analysis was further studied by ex-
amining the effective entry pupils obtained from passive
eye-tracking analysis. We selected the most variable set of
series (according to the standard deviation of the RMS
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wavefront error and the standard deviation of the Zernike
coefficients across series, respectively), which corre-
sponded to eyes 1 (H19) and 2 (H37 2), respectively. We
found that absolute random pupil shifts across the mea-
surements were less than 0.17 mm for coordinate x and
0.11 mm for coordinate y. The mean shift of the pupil
from the optical axis (i.e., centration errors, to which both
sequential and nonsequential aberrometers can be
equally subject), was in general larger than random
variations. We compared the estimates of the wave aber-
rations obtained using the nominal entry pupils with re-
spect to those obtained using the actual pupil coordinates
(obtained from passive eye-tracking routines). When pu-
pil shifts were accounted for, measurement variability re-
mained practically constant both in terms of RMS stan-
dard deviation (from 0.09 to 0.07 um and from 0.14 to
0.13 um for eyes 1 and 2, respectively) and in terms of the
average standard deviation of the Zernike coefficients
(from 0.06 to 0.05 um and from 0.03 to 0.03 um, for eyes 1
and 2, respectively). On the other hand, the differences
between the average RMS using nominal or actual entry
locations (0.51 versus 0.49 um for eye 1 and 0.61 versus
0.59 um for eye 2) are negligible. Also, RMS_ Diff values
(using the wave aberrations with nominal entry locations
as a reference, and wave aberrations with the actual
entry locations as a test), 0.02 um=+0.01 um for eye 1
(mean=std across repeated measurements for the same
pattern) and 0.04 um+0.02 um for eye 2 are below the
threshold for these eyes.

B. Numerical Simulations

We have learned from artificial eyes that sampling pat-
terns with a small number of samples (19) are good at
sampling aberration patterns with no higher-order terms
(eye A2). When analyzing our ranking results on normal
human eyes, remarkable differences were found only in
the patterns with a small number of samples. This is due
to the presence of higher-order aberrations and a larger
measurement variability in these eyes.

Due to the lack of a “gold standard” measurement,
there are some issues that have not been addressed in the
experimental part of this work, such as the following: (1)
Does the magnitude of some particular aberrations deter-
mine a specific pattern as more suitable than others for
sampling that particular eye? (2) Will eyes with aberra-
tion terms above the number of samples be properly char-
acterized using the different patterns? (3) Will measure-
ments in eyes with aberration terms of magnitude larger
than that of normal eyes yield different results?

We have used computer simulations as a tool to address
these issues. Simulations were performed as follows: We
first assumed a “true” aberration pattern for a simulated
eye, which was basically a set of Zernike coefficients (ei-
ther 37 or 45 terms). From this true aberration pattern, a
wavefront was computed as the “true” wavefront. The
simulation then involved sampling the wavefront. The
sampling was performed by computing a sampling pat-
tern (sample location and aperture size) and computing
the wavefront slopes across the sampling aperture. Noise
was then introduced into the slope estimates. For this
simulation, we used the noise values estimated from the
actual wavefront measurements described above. While



Llorente et al.

the simulation software can include light intensity and
centroiding accuracy, for the current simulations it was
deemed most important to set the variability of the cen-
troid determinations to experimentally determined val-
ues. Once a new set of centroids was computed for each
sample, a wavefront was estimated using a standard
least-squares estimation procedure identical to that de-
scribed above for the actual data, fitting up to either 17
(for the Hex19 and Circ19) or 37 terms. We calculated 25
simulated wavefronts for each simulated condition, al-
though only the first five sets of Zernike coefficients were
used to compute the metrics in order to reproduce the
same conditions as in the measurements.

First, we verified that the results obtained from the
simulations were realistic by using the Zernike coeffi-
cients of the real eyes (obtained with the H91 pattern).
We sampled the aberrations obtained with the same sam-
pling patterns used in the measurements of our human
eyes as well as with R177 (previously used in the artificial
eyes), and we obtained the corresponding coefficients. Fi-
nally, we applied the different metrics and ranking to
these simulated coefficients, sorting the patterns for each
metric across all eyes. We also used the hierarchical clus-
ter analysis on these simulated data eye by eye.

Figures 5(d) and 5(e) show the ranking plot for
RMS_Diff and for W%, respectively, and Fig. 5(f) shows
the dendrogram corresponding to the global hierarchical
cluster analysis (i.e., including all the eyes) for the simu-
lated human eyes. The results of the global hierarchical
cluster analysis are presented, similar to the actual data,
as a summary of the results for each of the 12 simulated
eyes. Solid, dashed, and dotted lines indicate “good,” “me-
dium,” and “bad” clusters, respectively, as previously de-
scribed. Trends similar to those of the measured human
eyes are seen, with the main clusters repeating, although
individual pairings changed. As with the measured hu-
man eyes, shown in Fig. 5(c), H91, C91, and A49 are in
the “good” group; J49 and L49 belong to the “medium”
group; and H37, H19, and C19, although not clearly
within any group, appear in borderline positions. As ex-
pected, the pattern R177 was included in the “good”
group. We conclude that the simulations provide a good
estimate of the performance of the repeated measure-
ments using different sampling schemes in real normal
eyes.

Once we had validated our simulations in normal
(healthy, nonsurgical) human eyes, we applied the simu-
lations to three different sets of Zernike coefficients corre-
sponding to the following: (1) A keratoconus eye measured
using LRT with H37 as a sampling pattern [37]. The main
optical feature of these eyes is a larger magnitude of
third-order terms (mainly coma) than in normal eyes.
RMS for third- and higher-order aberrations was
2.362 um for the original coefficients used to perform the
simulation. (2) A post-LASIK eye measured using LRT
with H37 as a sampling pattern [38]. These eyes show an
increase of spherical aberration toward positive values
and a larger amount of coma after the surgery. RMS for
third- and higher-order aberrations was 2.671 um for the
original coefficients used to perform the simulation. (3) An
eye with aberrations higher than the seventh order. In
this case we used the coefficients up to the seventh order
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corresponding to the previous post-LASIK eye and added
0.1 um on the coefficient Zg, simulating a post-radial
keratotomy (post-RK) eye. RMS for third- and higher-
order aberrations was 2.672 um for the original coeffi-
cients used to perform the simulation.

Figure 7 shows the results obtained for these three
eyes, for RMS_Diff [(a), (d), and (g)], for W% [(b), (e), and
(h)], and for the hierarchical cluster analysis [(c), (f), and
(1)]. The results were repetitive across the three eyes, with
R177, H37, and A49 resulting as the best patterns, and
C19 as the worst, for both RMS_Diff and W%. The reason
why in this case H37 is consistently classified as the best
pattern is apparently because this is the pattern used to
perform the original measurement of aberrations from
which the wavefront was computed for the simulations.
We should note that the values for RMS_ Diff for the kera-
toconic eye were smaller (the three first patterns were not
above the threshold for RMS_Diff) compared with the
other two eyes, indicating that differences from the refer-
ence pattern were smaller. The fact that most of the met-
ric values are above the threshold indicates that in these
eyes differences are not attributable to variability (al-
though it should be noted that the variability values used
in the simulations were obtained from normal eyes and
that they may be smaller than those corresponding to
pathological/surgical eyes). The cluster analysis results
are similar across the three eyes, with the exception of
H19, which for the surgical eyes is close to the “good” pat-
terns group. This may be due to the predominance of
spherical aberration, characteristic of these eyes

Although the values of the metrics are larger for these
“pathological” eyes, the conclusions obtained from our
real eyes seem applicable to eyes with greater amounts of
aberrations: Even though patterns with more samples
tend to give better results, the spatial distribution of the
samples is important. While a large number of samples
helps (R177), the correct pattern at lower sampling was
more efficient (A49, H91) for eyes dominated by some spe-
cific aberrations.

We should note that the conclusions related to patho-
logical eyes displayed in this section are obtained from
simulations results and should be regarded as a prelimi-
nary approximation to the study of sampling pattern in
pathological eyes, which should include experimental
data.

C. Comparison with Previous Literature

The analytical model of Diaz-Santana et al. [29], previ-
ously described in the introduction, allowed them to test
theoretically different sampling patterns using as a met-
ric the RMS error introduced in wavefront measurements
by the different geometries. This model uses as an input
the second-order statistics of the population, and hence it
is bound to include the interactions reported by McLellan
et al. [25], as long as the population sample and number
of Zernike terms are large enough to reflect all possible
interactions. The model was applied to an apparently
young population of 93 eyes, with aberration terms up to
the fourth order, to compare square, hexagonal, and polar
geometries. They found that the sampling density did not
influence the RMS error much for hexagonal and square
grids, whereas lower sampling densities produced a
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row: (g), (h), ()] eyes. The first [(a), (d), (g)] and second columns [(b), (e), (h)] show the results for the metrics RMS_Diff and W%, re-
spectively, corresponding to each pattern. The thicker horizontal line represents the threshold corresponding to each eye for the corre-
sponding metric. Values of the metric below this threshold indicate that the differences are due to variability in the measurement and not
to differences between patterns. The third column [(c), (f), (i)] shows the dendrograms corresponding to the hierarchical cluster analysis
(HCA) for the keratoconic, post-LASIK, and post-RK eyes. “Dist.” stands for “distance.” The less distance between patterns, the more
similarity between them. Solid, dashed, and dotted lines indicate “good,” “medium,” and “bad” clusters, respectively, according to the

classification obtained from the metrics.

smaller error for polar grids. When comparing grids with
different geometries and similar densities, they found, in
agreement with our results, that the polar geometry was
best (in terms of smaller error), followed by the hexagonal
grid. Differences in performance between patterns de-
creased as density increased.

The analytic model [23] of Kolmogorov’s statistics pro-
posed by Soloviev et al. indicates that random sampling
produces better results than regularly spaced ones. They
also reported that aliasing error increases dramatically
for regular samplings for fits reconstructing more modes,
whereas the associated error of the HS sensor was
smaller for irregular masks (with 61 subapertures of 1/11
of the pupil diameter size), probably because an irregular
geometry helps to avoid cross coupling. Our experimental
study supports their conclusions that simply increasing
the number of samples does not necessarily decrease the
error of measurement and that sampling geometry is im-
portant.

In the current study, we used the Zernike modal fitting
to represent the wave aberration because it is the stan-
dard for describing ocular aberrations. Smolek and Klyce
[39] questioned the suitability of Zernike modal fitting for
representing aberrations in eyes with a high amount of
aberrations (keratoconus and postkeratoplasty eyes), re-
porting that the fit error had influenced the subject’s best

corrected spectacle visual acuity. Marsack et al. [40] revis-
ited this question recently, concluding that only in cases
of severe keratoconus (with a maximum corneal curva-
ture over 60 D) did Zernike modal fitting fail to represent
visually important aberrations. In the current study we
did not address this, but rather restricted our conditions
to ones more commonly encountered and for which
Zernike modal fitting is expected to be adequate.

5. CONCLUSIONS

We summarize our conclusions as follows:

(1) Comparison of optical aberrations of healthy non-
surgical human and artificial eyes measured using differ-
ent sampling patterns allows us to examine the adequacy
of two spatial metrics, the RMS of difference maps and
the proportional change in the wavefront (W%), to com-
pare estimates of aberrations across sampling schemes.

(2) For artificial eyes, there is an interaction of the ab-
errations present and the ability of a given spatial sam-
pling pattern to reliably measure the aberrations. Simply
increasing the number of samples was not always as ef-
fective as choosing a better sampling pattern.

(38) Moderate density sampling patterns based on the
zero of Albrecht’s cubature (A49) or hexagonal sampling
performed relatively well.
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(4) For normal human eyes, individual variability in lo-
cal slope measurements was larger than the sampling ef-
fects except, as expected, for undersampling patterns
(H19 and C19). However, in these eyes we also found that
the spatial distribution of the sampling can be more im-
portant than the number of samples: A49 and H37 were a
good compromise between accuracy and density.

(5) The numerical simulations are a useful tool to as-
sess a priori the performance of different sampling pat-
terns when measuring specific aberration patterns, since
in general the results are similar to those found for our
measured normal human eyes.
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