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Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is pro-
posed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images
obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyra-
mid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an
optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy.
Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is
robust to random noise. © 2016 Optical Society of America
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1. INTRODUCTION

Phase unwrapping is an important step in several optical inter-
ferometry, adaptive optics, and imaging applications [1–3]. The
effects of noise become crucial when the number of pixels per
interference fringe is not sufficiently large and the signal-to-
noise ratio (SNR) is low. In such situations, conventional phase
unwrapping methods are not consistent [4]. Most phase un-
wrapping methods are application dependent and demand
an optimization of multiple parameters. The sources of noise
are inherent diffraction, light source fluctuations, aberrations
due to the sample, and the optical system. Noise can be over-
come by smartly avoiding noisy pixels in a branch cut phase
unwrapping algorithm [1], although this fails if the noise is high
[5–11]. Filtering is often used to reduce noise and such an op-
eration allows smoothening near the phase jumps and elimina-
tion of potential useful information, which could adversely
affect phase unwrapping [12].

Recently, a virtual Hartmann–Shack (HS) method was pro-
posed for phase unwrapping [4]. The wrapped phase was as-
sumed to be incident on an array of simulated microlenses.
The locations of the simulated HS focal spots were estimated
using the intensity weighted centroiding algorithm [13] and the
unwrapped phase was recovered from the calculated local wave-
front slopes. It was shown that the accuracy of phase unwrap-
ping primarily depends on sampling of the wrapped phase and
diffraction-limited wavefront sensing can be achieved using an

iterative estimation procedure in the presence of noise.
However, the performance of the virtual HS is limited by local-
ized errors due to centroiding arising from random noise and
has a cumulative effect on the unwrapped phase. In addition,
the wrapped phase is subdivided into a finite number of sub-
apertures and the slope sampling is limited by the resolution
of the phase map. Ambiguities due to jumps in phase close
to the borders of the subapertures can cause further inaccura-
cies. The aforementioned shortcomings place a lower limit on
the SNR for which diffraction-limited performance may be
achieved [14]. In this paper, a novel method of phase unwrap-
ping is proposed based on the principles of a pyramid wave-
front sensor (PWS) [15] that significantly lowers this limit.
The PWS performs better averaging of random noise with a
larger pupil sampling and better resolution. Here, the wrapped
phase is assumed to be located in the back focal plane of a lens,
which is situated at a focal distance away from a simulated
pyramidal prism with four facets. Since the PWS is not physi-
cally present, this method of phase unwrapping is called the
virtual PWS. Modulation plays an important role in con-
trolling the dynamic range and sensitivity of the PWS [16]
and its role in phase unwrapping is studied. The method is
tested on noisy interferograms recorded experimentally with
a CCD camera in a digital phase-shifting (PS) point diffraction
interferometer (PDI) [4,17] by using a spatial light modulator
to avoid mechanically moving components. The light used
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was a 632.8 nm He–Ne laser. Aberrations are introduced
with the help of a microelectromechanical systems (MEMS)
deformable mirror (Boston Micromachines Corporation) in
closed-loop with a commercial HS wavefront sensor.

2. METHOD

Let us imagine that the wrapped phase, ϕw�x; y� (experimen-
tally obtained in a PS PDI when aberrations were induced with
a deformable mirror), defined in the interval � −π π � within a
circular pupil, P�x; y�, is located at the back focal plane of a lens
with a focal length of 1 m (physically not present) that focuses
light onto a pyramidal prism (physically not present) with its
phase, T �X ; Y � [16,18], as illustrated in Fig. 1. This pyramidal
phase would divide the incident light into four distinct pupils
and using a fast Fourier transform (FFT) method [19], the
pupil plane intensity, I pyr, can be evaluated as shown below:

I pyr�x; y� � jFFT�FFT�P�x; y�:eiϕw�x;y��:T �X ; Y ��j2: (1)

A few examples of the sources of aberrations used when record-
ing the wrapped interferogram are imperfections in the optical
elements, a patient’s eye [20], a specimen under an optical mi-
croscope [21], and atmospheric turbulence in a telescope [22].
From a linear combination of the intensities in the four pupils
of the virtual PWS (I j, 1 ≤ j ≤ 4) in Ipyr�x; y�, the local “x”
and “y” wavefront slopes, Sx�x; y� and Sy�x; y�, can be evaluated
[16]. The unwrapped phase, ϕ�x; y�, is reconstructed from the
estimated slope values using the slope geometry of Southwell
[13,14,23]. The Zernike polynomials are used to decompose
the reconstructed wavefront ϕ�x; y� using a least-square fitting
technique to eliminate the high spatial frequency components
and artifacts arising from noise.

To compare and test the capability of the proposed method
in the presence of noise, simulations are performed. The PS
PDI interferograms (I1, I2, and I3 corresponding to phase
shifts of 0, π∕2, and π, respectively) and hence the wrapped
phase are calculated as follows:

ϕw�x; y� � tan−1
�
2I2�x; y� − I3�x; y� − I1�x; y�

I3�x; y� − I1�x; y�

�
: (2)

Here, the interferograms (I1−3) in a digital PS PDI are obtained
as described earlier [4,17].

Root-mean-square (RMS) of the residual wavefront is used
to evaluate the quality of reconstruction [4]. Alternately, the
Strehl ratio of the residual wavefront is evaluated by assuming
that the pupil plane has aberrations equal to the difference of
the induced aberration and the reconstructed wavefront. If the

estimated wavefront is different from the induced wavefront,
the Strehl ratio would be lower than unity.

3. RESULTS

Figure 2(a) shows the wavefronts—defocus, astigmatism,
coma, and secondary astigmatism—generated in closed-loop
using the deformable mirror and the HS wavefront sensor.
The wrapped phase images are calculated using Eq. (2) from
the interferograms recorded by a digital PS PDI and are shown
in Fig. 2(b). From the wrapped phase, the intensity at the pupil
plane, Ipyr, of a pyramid wavefront sensor is evaluated using
Eq. (1) and 25 measurements in a circular modulation such
that the tip of the pyramid oscillates in a circular path around
the focal point of the focused beam. The radius of the circular
path is the modulation amplitude. Then, the local wavefront
slopes, Sx and Sy, are estimated. Finally, the wavefronts are re-
constructed using the singular value decomposition technique
[13]. The reconstructed wavefronts are decomposed using
the first four orders of Zernike polynomials and are shown
in Fig. 2(c). It may be noted that the wavefronts reconstructed
with the virtual PWS match well with the induced aberrations
as validated by the low residual wavefront error shown in
Fig. 2(d), which is calculated by subtracting the decomposed
wavefronts in Fig. 2(c) from the induced aberrations in
Fig. 2(a). Here, a modulation amplitude that maximizes the
estimated Strehl ratio for each aberration is used. This optimal
modulation depends on the nature of the aberrations, their
magnitude, and SNR. Although 1529 × 1529 “x” and “y” local
slope values were calculated from the wrapped phase, for
reconstruction of the wavefront, the slope matrices were resized
to 31 × 31 by using bilinear interpolation. This sampling was
chosen because a higher sampling needs more computations
and increasing the slope sampling beyond 31 × 31 did not

Fig. 1. Illustration of the proposed virtual pyramid wavefront sen-
sor. Here, the lens “L” and the pyramidal phase T �X ; Y � are physically
not present. The wrapped phase is obtained in a digital PS-PDI [17]
and Ipyr is evaluated using Eq. (1).

Fig. 2. Experiments: (a) wavefronts measured with a commercial
HS wavefront sensor; (b) wrapped phase (radians: −π to π) obtained
in a PS PDI; (c) wavefront reconstructed with the virtual PWS; and
(d) residual wavefront error.
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increase the Strehl ratio any further. On average, the Strehl ratio
and RMS were found to be 0.28 and 0.14 μm, respectively, for
the residuals in Fig. 2(d), indicating a big leap in performance
over virtual HS [4] that resulted in a mean Strehl ratio and
mean RMS error of 0.11 and 0.20 μm for the same wrapped
phase images.

The estimated Strehl ratio and RMS error as a function of
modulation amplitude are shown in Fig. 3. Simulations were
performed at SNR � ∞ and clearly, the accuracy is higher
under noise-free conditions. In addition, the experimental
curves are broader than the theoretical counterparts. The
differences arise due to inaccuracies in the generation of the
aberrations, misalignment errors in the digital PS PDI, and
the presence of noise in the interferograms. The tilt due to
PS [as seen in Fig. 2(b)] prevents convergence with increasing
modulation as predicted earlier [16].

Figure 4 shows the results of simulations using the virtual
PWS. Here, the wavefronts measured by the HS wavefront
sensor were used as the starting point in the simulations
[see Fig. 4(a)] and no effects of noise were included while es-
timating the wrapped phase shown in Fig. 4(b) from the calcu-
lated interferograms [4,17]. The wavefronts reconstructed
with the virtual PWS from the wrapped phase in Fig. 4(b)
are shown in Fig. 4(c). The mean RMS error shown in
Fig. 4(d) is 0.10 μm and the best accuracy was achieved near
a modulation of 0.5 mm (see Fig. 3).

To study the effects of noise through simulations, independ-
ently generated white Gaussian noise was added to each of the
interferograms (I1−3) before calculating the wrapped phase
[see Eq. (2)]. As the SNR increases, the discrepancies in the
detected slopes reduce resulting in an increase in the Strehl ratio
of the residual wavefront map, as illustrated by the simulation
results in Fig. 5(a), while sensing the aberrations introduced
by the deformable mirror [see Fig. 2(a)]. With an increase in
the magnitude of aberrations or with the inclusion of higher-
order aberrations, the minimum SNR needed for convergence
increases. This is attributed to an increase in the number of
fringes per pixel. However, for a fixed modulation amplitude
(optimal value predicted at SNR � ∞) and following an iter-
ative approach while estimating Strehl ratio [4,16], it is possible
to improve performance, as illustrated in Fig. 5(b). This is done
by assuming that the residual wavefront obtained in the first
loop of the phase unwrapping process is the new wavefront for
the second iteration. This new wavefront is used to calculate the

interferograms and the wrapped phase for the second iteration
and so on. This iterative procedure can be implemented in an
optical system by monitoring the point spread function with
a CCD camera. It can be seen in Fig. 5(b) that for the case
of defocus, a decrease in the SNR from 10 to 5 dB requires
an increase in the minimum number of iterations by three
to go beyond the diffraction limit.

Since most applications including visual optics involve a
combination of the low-order aberrations that play a prominent
role, the proposed method was tested with randomly simulated
wavefronts containing up to three orders of Zernike polyno-
mials excluding the piston and the two tilt terms. On average,
the peak-to-valley of the randomly simulated aberrations is
2.3 μm and the chosen modulation amplitude is 0.5 mm
(sensitivity improves with smaller modulation and the lower
limit is given by the number of iterations for convergence).

Fig. 3. Effect of modulation amplitude on wavefront sensing accu-
racy in the experiments and theoretical predictions at SNR � ∞ in
terms of (a) Strehl ratio and (b) RMS error.

Fig. 4. Simulations: (a) wavefronts measured with a commercial HS
wavefront sensor; (b) simulated wrapped phase (radians: −π to π) in
a PS PDI; (c) wavefront reconstructed with the virtual PWS; and
(d) residual wavefront error.

Fig. 5. Simulations: (a) accuracy improves with increasing signal
while sensing simulated aberrations [Fig. 4(a)] and results of (b) iter-
ative evaluation. Here, random noise (single trial) is added to the
calculated interferograms.
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The modulation amplitude is progressively reduced with in-
creasing iteration number to avoid over-estimation. The perfor-
mance of the virtual PWS is compared with virtual HS [4] and
Fourier [24] phase unwrapping methods in the presence of
noise. In the case of the virtual HS, reconstruction was per-
formed with 20 × 20 subapertures and 32 × 32 pixels were used
for centroiding the virtual HS focal spots. An identical slope
sampling of 20 × 20 was used in the case of the virtual PWS
for comparison. This sampling was chosen to compare against
the optimal sampling in a virtual HS when sensing aberrations
with a digital PS PDI [4]. At SNR � 10 dB, the Fourier phase
unwrapping algorithm fails [4] and the virtual PWS is evidently
superior and saturates at a higher Strehl ratio value in compari-
son with the virtual HS for cases of 10 dB and 5 dB SNR
(Fig. 6), illustrating the potential of the virtual PWS at very
low SNR. The error bars for each iteration shown in Fig. 6
indicate the standard deviation of the Strehl ratio values of
10 independently generated random wavefronts. Likewise, in
the case of high-order aberrations and their random linear
combinations, the virtual PWS consistently converged to
higher Strehl ratios in the presence of random noise.

The method was also tested on a randomly simulated atmos-
pheric turbulence phase screen for a 1 m class telescope on
a 125 × 125 grid [16], as shown in Fig. 7(a). Its high spatial
frequency components result in a challenging wrapped phase
shown in Fig. 7(b). The reconstructed wavefront [Fig. 7(c)]
obtained by applying the virtual PWS resulted in a residual
[Fig. 7(d)] with a Strehl ratio of 0.88 and RMS error of
0.05 μm after four iterations when 61 × 61 slope sampling
is used. Here, Zernike decomposition is not applied to avoid
eliminating vital high-frequency information.

4. DISCUSSION

Focal spot centroiding influences the reconstruction accuracy
of HS wavefront sensors [25]. The centroiding errors arising
from noise in the wrapped images lead to inaccuracies in
the virtual HS method [4] and the estimated Strehl ratio drops
with increasing noise [14]. Furthermore, the total number of
subapertures needs to be increased to compensate for a decrease
in SNR and in order to retain the same number of pixels per
subaperture (and not compromise centroiding accuracy), the
effective pupil diameter is a larger matrix. This makes the vir-
tual HS method slow and computationally challenging for low
SNR. The virtual PWS is relatively robust and the four pupil
intensity images enable a direct evaluation of global wavefront
slopes and does not need local wavefront slope estimation that
may involve additional errors as is the case with the virtual HS.
The size of the pupils can be adjusted to the number of slope
measurements needed for phase unwrapping. And, by control-
ling the apex angle of the pyramidal prism, the pupils can be
placed right next to one another in a 2 × 2 grid. For instance, to
compute 31 × 31 slope values, an intensity matrix, Ipyr, with
62 × 62 pixels is sufficient to estimate the wavefronts. In com-
parison, a virtual HS uses ∼20 × 20 pixels per subaperture and
to obtain 31 × 31 slope values, it requires to compute an inten-
sity matrix of dimension 620 × 620 pixels, 10 times larger than
the matrix needed in a virtual PWS. In the absence of noise, the
virtual HS and virtual PWS gave similar results with minor
differences in the residual wavefronts.

Modulation amplitude has an important role in controlling
the dynamic range and sensitivity of a pyramid wavefront sen-
sor [26]. It was shown earlier that the optimal modulation am-
plitude increases in the presence of noise [27]. The same can be
noted in Fig. 3. In addition, a decrease in the magnitude of
the aberrations leads to a decrease in the optimal modulation
amplitude [16] and hence the modulation amplitude is pre-
meditatedly reduced with increasing iterations as the residual
decreases. In practical situations, optimal modulation can be
obtained by minimizing the difference between the wrapped
phase image and the rewrapped image obtained from the recon-
structed wavefront. The accuracy can be improved further by
increasing the number of facets in a pyramid wavefront sensor
[27]. In addition, increasing the number of phase shifts in a PS
PDI, the measurement noise can be reduced. The conclusions
derived with Strehl ratio as an evaluation metric in Figs. 5 and 6
were not affected when RMS error is used.

The virtuality of the PWS that is proposed here is unaffected
by the practical limitations of a physical PWS including the
need for moving parts to achieve modulation, the precise align-
ment of the tip of the pyramidal prism at the focus of a lens and
manufacturing defects, all of which can adversely affect recov-
ery of the aberrations. There exist nonmoving solutions for
closed-loop operation [28]. However, they need several itera-
tions to achieve diffraction-limited point spread function [16].

In conclusion, a novel method of phase unwrapping called
the virtual PWS has been proposed. Although the virtual PWS
is tested on wrapped phase images in a PS PDI, the efficacy of
the method is not limited to this application. It can be easily
adapted to any complex phase unwrapping application includ-
ing digital holographic microscopy, sample motion-detection

Fig. 6. Comparison of phase unwrapping methods at (a) 10 dB
and (b) 5 dB while sensing 10 randomly simulated wavefronts.
Corresponding sample wrapped phase maps are shown within the
plots.

Fig. 7. (a) Simulated turbulence phase screen; (b) wrapped phase
corresponding to (a) in the interval �−π π �; (c) reconstructed with
the virtual PWS; (d) residual wavefront error.

8366 Vol. 55, No. 29 / October 10 2016 / Applied Optics Research Article



in spectral domain optical coherence tomography, and other
medical imaging modalities, such as magnetic resonance
elastography.
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