CONTENTS

LIST OF TABLES	13
LIST OF ILLUSTRATIONS	13
ACKNOWLEDGEMENTS	19
DECLARATION	21
ABSTRACT	23
KEY FOR SYMBOLS	25
CHAPTER 1 INTRODUCTION	27
1.1 THE HUMAN EYE	28
1.1.1 CORNEA	29
1.1.2 CRYSTALLINE LENS	32
1.1.3CHAMBERS OF THE EYE	34
1.1.4 UVEA	34
1.1.5 RETINA	35
1.1.6 AXIS OF THE EYE	36
1.2 ABERROMETRY	37
1.2.1 OPTICAL ABERRATIONS	37
1.2.2 ESTIMATION OF ABERRATIONS	42
1.2.3 HISTORY AND TYPES OF ABERROMETERS	45
1.2.4 OPTICAL ABERRATIONS OF THE HUMAN EYE	49
1.2.4.1 Ocular Aberrations	49
1.2.4.2 Corneal Aberrations	52
1.2.4.3 Internal Aberrations: interaction between total and corneal	53
aberrations	00
1.2.5 ABERRATION MEASUREMENT IN PATIENTS: INFLUENCE OF	55
1251 Polarization State of the magurement light	55
1.2.5.2. Mossurement Light Wavelength	59
1.2.5.2 Measurement Light Wavelength	61
1.2.6 APPLICATIONS	64
1.3 AMETROPIA AND EMMETROPISATION	04
	66
1.5.1 AWETROFIA ANDUFTICAL ABEKKATIUNS	70
1.4. LASIN AS A COKKECTION OF KEFKACTIVE EKKOKS	70
$1.4.1 NEFRACTIVE SURGER I AND OF TICAL ABERKATIONS \dots$	74 76
1.5 THESIS STNOT 515	70
CHAPTER 2 METHODS	79
2.1 MEASUREMENT OF OCULAR ABERRATIONS: THE LASER RAY	00
TRACING TECHNIQUE.	80

	2.2 THE LASER RAY TRACING DEVICE	83
	2.2.1 EXPERIMENTAL SETUP	84
	2.2.2 SOFTWARE	90
	2.2.2.1 System Control Software	90
	2.2.2.2 Processing Software for retinal images (ocular aberrations)	91
	2.2.2.3 Processing software for pupil images (passive eyetracking)	93
	2.3 SYSTEM CALIBRATION	97
	2.3.1 RETINAL CAMERA	97
	2.3.2 PUPIL CAMERA	99
	(a) Offset 1	100
	(b) Scale (equivalence between pixels and millimetres)	100
	2.3.3 ASTIGMATISM CORRECTION AND SCANNER CALIBRATION 1	101
	(a) Astigmatism compensation 1	102
	(b) Scanner calibration	102
	2.3.4 SAMPLING PATTERN VERIFICATION	103
	2.3.5 FOCUSING BLOCK SCALE CALCULATION	106
	2.3.6 COMPENSATION OF DEFOCUS BY THE FOCUSING BLOCK (FB) 1	109
	2.3.7 OPTICAL ABERRATIONS INTRODUCED BY THE SYSTEM 1	111
	(a) Geometrical aberrations 1	111
	(b) Chromatic aberrations 1	112
	2.3.8 HIGH ORDER ABERRATIONS IN HUMAN EYES 1	112
	2.3.8.1 LRT1 vs LRT2 1	113
	(a) Phase Plate 1	113
	(b) Human Eyes	115
	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1	115 118
СНА	(b) Human Eyes	115 1 18
CHA	(b) Human Eyes	115 118 .21
CHA ABEI	(b) Human Eyes	115 118 .21
CHA ABEI	(b) Human Eyes	115 118 .21
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1	.21 .121 .221
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS 1	115 118 .21 .21 .21 .22 .22
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS 1 3.3.1 LASER RAY TRACING 1	115 118 .21 .21 .21 .22 .24 .24
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS 1 3.3.1 LASER RAY TRACING 1 3.3.1.1 Set up and procedures 1	115 118 21 121 122 124 124
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS 1 3.3.1 LASER RAY TRACING 1 3.3.1.2 Experiments 1	 115 118 21 121 122 124 124 124 124 124
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS 1 3.3.1 LASER RAY TRACING 1 3.3.1.2 Experiments 1 3.3.1.3 Subjects 1	 115 118 21 121 122 124 124 124 124 126
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RRATIONS 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS 1 3.3.1 LASER RAY TRACING 1 3.3.1.2 Experiments 1 3.3.1.3 Subjects 1 3.3.2 HARTMANN-SHACK 1	 115 118 21 121 122 124 124 124 124 126 126
CHA ABEI	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1.2 Experiments13.3.1.3 Subjects13.3.2 HARTMANN-SHACK13.3.2.1 Set up and procedures1	 115 118 21 121 122 124 124 124 124 126 126 126 126
CHA ABEI	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1.2 Experiments13.3.2 HARTMANN-SHACK13.3.2.1 Set up and procedures13.3.2.2 Experiments13.3.2.1 Set up and procedures13.3.2.1 Set up and procedures13.3.2.2 Experiments1	 115 118 21 121 122 124 124 124 126 126 126 126 127
CHA ABEI	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1.2 Experiments13.3.2 HARTMANN-SHACK13.3.2.2 Experiments13.3.2.3 Subjects1	 115 118 21 121 122 124 124 124 124 126 126 126 126 127 128
CHA ABEI	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1.2 Experiments13.3.2 HARTMANN-SHACK13.3.2.1 Set up and procedures13.3.2 BARTMANN-SHACK13.3.2 BARTMANN-SHACK13.3.2.3 Subjects13.3.2.3 Subjects13.3.3 COMPARISON OF HS AND LRT SETUPS1	 115 118 21 121 122 124 124 124 124 126 126 126 126 127 128 128
CHA ABE	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1.2 Experiments13.3.2 HARTMANN-SHACK13.3.2.1 Set up and procedures13.3.2 HARTMANN-SHACK13.3.2 Experiments13.3.2 Subjects13.3.2 Experiments13.3.2 Farperiments13.3.2 Farperiments13.3.2 Farperiments13.3.2 Farperiments13.3.2 Farperiments13.3.3 COMPARISON OF HS AND LRT SETUPS13.3.4 STATISTICAL ANALYSIS1	115 118 21 121 122 124 124 124 124 124 126 126 126 126 126 126 128 128 130
CHA ABEI	(b) Human Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1.2 Experiments13.3.1.3 Subjects13.3.2 HARTMANN-SHACK13.3.2.3 Subjects13.3.3 COMPARISON OF HS AND LRT SETUPS13.4 RESULTS1	115 118 21 121 122 124 124 124 124 126 126 126 126 126 126 128 128 130 130
CHA ABEI	(b) Human Eyes 1 2.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS. 1 PTER 3 INFLUENCE OF POLARISATION ON OCULAR 1 RATIONS. 1 3.1 ABSTRACT 1 3.2 INTRODUCTION 1 3.3 METHODS. 1 3.3.1 LASER RAY TRACING. 1 3.3.1.2 Experiments. 1 3.3.1.3 Subjects 1 3.3.2 HARTMANN-SHACK. 1 3.3.2.1 Set up and procedures. 1 3.3.2.1 Statistical ANALYSIS. 1 3.3.4 STATISTICAL ANALYSIS. 1 3.4.1 RAW DATA	115 118 21 121 122 124 124 124 124 124 126 126 126 126 126 127 128 130 130
CHA ABEI	(b) Fluman Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS.1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS.13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS.13.3.1 LASER RAY TRACING.13.3.1.2 Experiments.13.3.1.3 Subjects13.3.2 HARTMANN-SHACK.13.3.2.1 Set up and procedures.13.3.2.3 Subjects13.3.2.4 Staperiments.13.3.4 STATISTICAL ANALYSIS.13.4 RESULTS.13.4.2 INTENSITY PATTERNS.1	 115 118 21 121 122 124 124 124 124 126 126 126 126 126 126 128 128 130 130 130 132
CHA ABEI	(b) Fluman Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS13.3.1 LASER RAY TRACING13.3.1 Set up and procedures13.3.1.2 Experiments13.3.2 HARTMANN-SHACK13.3.2 Subjects13.3.2 Experiments13.3.2 Subjects13.3.2 Experiments13.3.2 Bereiments13.3.2 Bereiments13.3.2 Bereiments13.3.2 Subjects13.3.2 Experiments13.3.2 Bereiments13.3.2 Bereiments13.3.2 Subjects13.3.2 Experiments13.3.2 Subjects13.3.2 Experiments13.3.2 Subjects13.3.2 Subjects13.3 COMPARISON OF HS AND LRT SETUPS13.4 STATISTICAL ANALYSIS13.4 RESULTS13.4 RESULTS13.4 RAW DATA13.4.3 WAVE ABERRATION PATTERNS1	115 118 21 121 122 124 124 124 124 124 124 126 126 126 126 127 128 130 130 130 132
CHA ABEI	(b) Fluman Eyes12.4 PROTOCOL FOR MEASUREMENTS IN SUBJECTS.1PTER 3 INFLUENCE OF POLARISATION ON OCULAR1RRATIONS.13.1 ABSTRACT13.2 INTRODUCTION13.3 METHODS.13.3.1 LASER RAY TRACING.13.3.1 Set up and procedures.13.3.1.2 Experiments.13.3.2 HARTMANN-SHACK.13.3.2.1 Set up and procedures.13.3.2.1 Set up and procedures.13.3.2.3 Subjects13.3.2.4 STATISTICAL ANALYSIS.13.4 RESULTS.13.4.2. INTENSITY PATTERNS.13.4.3 WAVE ABERRATION PATTERNS.13.4.4 ZERNIKE COEFFICIENTS1	 115 118 21 121 122 124 124 124 124 124 126 <

CHAPTER 4 ABERRATIONS OF THE HUMAN EYE IN VISIBLE AND	4 4 4
NEAR INFRARED ILLUMINATION	141

	4.1 ABSTRACT
	4.2 INTRODUCTION
	4.3 METHODS
	4.3.1 LASER RAY TRACING
	4.3.1.1 Set up and procedures
	4.3.1.2 Setting and control experiment
	4.3.1.3 Subjects
	4.3.1.4 Measurements
	4.3.2 HARTMANN-SHACK
	4.3.2.1 Set up and procedures.
	4.3.2.2 Setting and control experiment
	4.3.2.3 Subjects
	4.3.2.4 Measurements
	4.4 RESULTS
	4.4.1 RAW DATA
	4.4.2 WAVE ABERRATION MAPS
	4.4.3 ZERNIKE COEFFICIENTS AND RMS
	4.5 DISCUSSION
	4.5.1 DIFFERENCES IN IMAGE INTENSITY PROFILES
	4.5.2 CHROMATIC DIFFERENCE OF FOCUS
	453-CONCLUSION
ABE	RRATION MEASUREMENTS
	5.1 ABSTRACT
	5.2 INTRODUCTION
	5.3 METHODS
	5.3.1 LASER RAY TRACING
	5.3.2 EYES
	5.3.3 EXPERIMENTAL PROCEDURE
	5.3.3.1 Artificial Eves
	5.3.3.2 Human Eves
	5.3.4 DATA PROCESSING
	5.3.4.1 Wave aberration estimates
	5.3.4.2 Wave aberration variability metrics
	5.3.4.3 Statistical analysis
	5.3.4.4 Numerical Simulations
	5.4 RESULTS
	5.4.1 AKTIFICIAL EYES
	5.4.1 ARTIFICIAL EYES
	5.4.1 ARTIFICIAL EYES 5.4.1.1 Wave Aberrations 5.4.1.2 Difference Metrics
	5.4.1 ARTIFICIAL EYES 5.4.1.1 Wave Aberrations 5.4.1.2 Difference Metrics 5.4.1.3 Statistical Tests
	5.4.1 ARTIFICIAL EYES 5.4.1.1 Wave Aberrations 5.4.1.2 Difference Metrics 5.4.1.3 Statistical Tests 5.4.2 HUMAN EYES

	5.4.2.1 Wave Aberrations
	5.4.2.2 Difference Metrics
	5.4.2.3 Statistical Tests
	5.4.3 NUMERICAL SIMULATIONS
	5.5 DISCUSSION
	5.5.1 ARTIFICIAL AND HUMAN EYES
	5.5.2 NUMERICAL SIMULATIONS
	5 5 3 - COMPARISON TO PREVIOUS LITERATURE
	554 - CONCLUSIONS
СЦ	PTED 6 OPTICAL ABERDATIONS IN MYOPIC AND
нүр	PEROPIC EVES
	6.1 ABSTRACT
	6.2 INTRODUCTION
	6.3 METHODS
	6.3.1 SUBJECTS
	6.3.2 AXIAL LENGTH AND CORNEAL SHAPE
	6.3.3 OCULAR ABERRATIONS
	6.3.4 CORNEAL TOPOGRAPHY: ESTIMATION OF CORNEAL AND
	INTERNAL ABERRATIONS
	6.3.5 REFRACTION
	6.3.6STATISTICAL ANALYSIS
	6.4 RESULTS
	6.4.1 AXIAL LENGTH AND CORNEAL SHAPE
	6.4.2 OPTICAL ABERRATIONS
	6.5 DISCUSSION
	6.5.1 CORNEAL SHAPE IN MYOPES AND HYPEROPES
	6.5.2 AGE RELATED ABERRATION DIFFERENCES IN MYOPES AND HYPEROPES
	6.5.3 ABERRATIONS AND DEVELOPMENT OF MYOPIA AND
	HYPEROPIA
	6.5.4 CONCLUSIONS
CHA	APTER 7 CHANGE IN OPTICAL ABERRATIONS OF THE EYE
WIT	H LASIK
	7.1 ABSTRACT
	7.2 INTRODUCTION
	7.3 METHODS
	7.3.1 SUBJECTS
	7.3.2 LASIK SURGERY
	7.3.3 MEASUREMENTS AND STATISTICAL ANALYSIS
	7.4 RESULTS
	7.4.1 TOTAL AND CORNEAL WAVE ABERRATION PATTERNS
	7.4.2 CHANGE IN TOTAL AND CORNEAL ABERRATIONS WITH
	MYOPIC LASIK
	7.4.3 CHANGE IN OCULAR AND CORNEAL ABERRATIONS WITH
	HYPEROPIC LASIK
	7.4.4 COMPARISON BETWEEN THE RESULTS AFTER MYOPIC AND AFTER HYPEROPIC LASIK
	7.4.5 CHANGE OF INTERNAL ABERRATIONS WITH LASIK

7.5 DISCUSSION	239
7.5.1 CHANGE IN ABERRATIONS WITH MYOPIC AND HYPEROPIC	239
LASIK	207
7.5.2 ROLE OF PREOPERATIVE INTERNAL OPTICS	242
7.5.3 CHANGES IN INTERNAL ABERRATIONS AND	246
BIOMECHANICAL RESPONSE	240
7.5.4 COMPARISON WITH OTHER STUDIES	248
7.5.5 IMPLICATIONS	251
7.5.6 CONCLUSIONS	252
CHAPTER 8 CONCLUSIONS	255
Appendix A JACOBI, LEGENDRE AND ALBRECHT SAMPLING COORDENATES	261
REFERENCES AND BIBLIOGRAPHY	259

LIST OF TABLES

Table 1.1:	Comparison of the features of the different techniques to estimate ocular aberrations from transverse	
	aberrations.	48
Table 2.1:	RMS values for different orders for the two wavelengths	
	of the set-up	112
Table 7.1	Refractive surgery data for hyperopic eyes	225
Table A.1	Coordinates of the 49 samples of the Albrecht, Jacobi	
	and Legendre patterns	261

LIST OF ILLUSTRATIONS

Figure 1.1:	Cross-section of the eye (side view)	28
Figure 1.2:	Histological section of the cornea	30
Figure 1.3:	Diagram showing the shape of cross-sections of a prolate and an oblate ellipsoids compared to a sphere, according to their asphericity (Q) value	31
Figure 1.4:	Diagram showing a cross-section of the crystalline lens	33
Figure 1.5:	Diagram showing the different layers of the vertebrate retina.	36
Figure 1.6:	Schematic representation of the wave aberration	39
Figure 1.7:	Illustration of three Seidel aberrations: astigmatism (A), spherical aberration (B) and coma (C)	41
Figure 1.8:	Representation of the Zernike base functions	43
Figure 1.9:	Schematic diagram of the working principle of Hartmann-Shack sensor.	47
Figure1.10:	Schematic diagram of the working principle of Laser Ray Tracing	48
Figure 1.11:	Diagrams showing different states of polarisation	56
Figure 1.12:	Polarisation effects in the eye	59
Figure 1.13:	Cross-section of ametropic eyes.	66
Figure 1.14:	Prevalence rates of myopia around the world as a function of age.	68

Figure 1.15:	Illustration showing the different steps in the LASIK surgical procedure.	72
Figure 1.16:	Representation of the ablation patterns for myopic and hyperopic correction.	73
Figure 2.1:	Schematic diagram of the working principle of Laser Ray Tracing Technique	82
Figure 2.2:	Diagram of the LRT2 setup	85
Figure 2.3:	Snapshot of the control program for LRT2	88
Figure 2.4:	Frame of a movie showing a typical run with LRT2	88
Figure 2.5:	Snapshot of the processing software interface	93
Figure 2.6:	Illustration of the steps performed by the pupil processing software	95
Figure 2.7:	Example of output figures from the pupil processing	96
Figure 2.8:	Wave aberration maps for one human eye computed using nominal and actual entry pupil coordinates, and corresponding difference maps	91
Figure 2.9:	Illustration of the Retinal Camera Calibration	99
Figure 2.10:	Illustration of the Pupil Camera Calibration	101
Figure 2.11:	Verification of the pupil sampling pattern	105
Figure 2.12:	Spot diagram from LRT corresponding to an artificial eye with positive defocus	106
Figure 2.13:	Different configurations of the Badal system for correction of refractive error	108
Figure 2.14:	Spherical error correction by the Focusing Block versus the nominal value of the trial lens	110
Figure 2.15:	Aberrations of the phase plate measured with LRT1 and LRT2	114
Figure 2.16:	Aberrations of Eye #1 measured with LRT1 and LRT2	116
Figure 2.17:	Aberrations of Eye #2 measured with LRT1 and LRT2	117
Figure 3.1:	Schematic diagram of the configuration of LRT1 used in this study	124
Figure 3.2:	Configurations of the set-ups to obtain the different polarising conditions	125

Figure 3.3:	Schematic diagrams showing the configuration of the Hartmann-Shack sensor used in this study	127
Figure 3.4:	Wave aberration contour for control eyes measured in both the LRT setup and the SH system	129
Figure 3.5:	Raw data as captured by LRT and HS	131
Figure 3.6:	Pupillary intensity maps from LRT aerial images	133
Figure 3.7:	Pupillary intensity maps from LRT for right and left eyes of the same subject	133
Figure 3.8:	Hartmann-Shack spot images for different polarisation conditions.	134
Figure 3.9:	Wave aberration contour maps for some of the eyes measured with LRT and HS	135
Figure 3.10:	Zernike coefficients comparing different combinations of polarization conditions	136
Figure 3.11:	Zernike coefficients Z_2^0 , Z_2^{-2} , Z_3^1 and Z_4^0 for all eyes of this study, comparing at least two different polarization states	137
Figure 4.1:	Schematic diagram of the LRT1 configuration used in this study	145
Figure 4.2:	Schematic diagram of the HS wavefront sensor used in this study	147
Figure 4.1:	Raw data as obtained from LRT and HS wavefront sensor.	149
Figure 4.4:	Wave aberration maps from LRT and HS for green and infrared light	150
Figure 4.5:	Plots of sets of the Zernike coefficients for green and IR light for the same eyes as in Figure 4.4	152
Figure 4.6:	Defocus for infrared vs. green wavelength for all subjects	153
Figure 4.7:	Bar diagrams comparing astigmatism, spherical aberration, and RMS for HOA with green and infrared for all subjects	155
Figure 4.8:	Experimental and simulated aerial images for green and infrared light	157
Figure 5.1:	Pupil sampling patterns used in the measurement of the ocular aberrations for this work	169

Wave aberration, difference, probability, and significance maps obtained for the artificial eye A3, using the different sampling patterns	178
RMS_Diff values and dendrograms from the hierarchical cluster analysis obtained for the artificial eyes	180
Wave aberration, difference, probability, and significance maps obtained for the human eye R12, using the different sampling patterns	181
Ranking values for RMS_Diff and W%, and dendrograms corresponding to the hierarchichal cluster analysis for the measured and simulated human eyes.	184
Comparison between the classification from the global and eye by eye hierarchical cluster analysis on the 12 human eyes	185
Results obtained for the keratoconic, post-LASIK, and post RK eyes for RMS_Diff and W, and dendrograms from the hierarchical cluster analysis (HCA)	187
Axial length (A), corneal apical radius of curvature (B), corneal asphericity (C), total, corneal, and internal spherical aberration (D), third-order RMS (E), and third and higher order RMS (F), averaged across hyperopes and myopes	206
Total, corneal, and internal third and higher order aberration maps for three of the hyperopic and three of the myopic eyes	208
Corneal, total, and Internal spherical aberration for myopic and hyperopic eyes sorted by increasing age	211
Spherical aberration of the hyperopic and myopic eyes included in this study as a function of age in comparison with spherical aberration of eyes from aging studies	214
Wave aberration maps for HOA, before and after myopic LASIK surgery	228
Wave aberration maps for HOA, before and after hyperopic LASIK surgery	229
Total and Corneal HOA RMS and SA before and after LASIK for myopia	230
	 Wave aberration, difference, probability, and significance maps obtained for the artificial eye A3, using the different sampling patterns

Figure 7.4:	Pre- and post-operative RMS, averaged across all myopic eyes, for HOA, 3rd order aberrations, 4th order aberrations and 5th and higher order aberrations, for a 6.5-mm pupil.	231
Figure 7.5:	Total and Corneal HOA RMS (A) and SA before and after LASIK for hyperopia	233
Figure 7.6:	Pre- and post-operative RMS, averaged across all hyperopic eyes, for HOA, 3rd order aberrations, 4th order aberrations and 5th and higher order aberrations, for a 6.5-mm pupil.	234
Figure 7.7:	Total, corneal and internal SA induced by myopic and hyperopic LASIK as a function of absolute spherical correction, for a 6.5-mm pupil	237
Figure 7.8:	Diagrams showing the transition points of the cornea after ablation for correction of myopia or myopic astigmatism on the steepest meridian (A), myopic astigmatism on the flattest meridian (B), hyperopia or hyperopic astigmatism (C)	241
Figure 7.9:	Total, corneal and internal HOA maps before (top) and after (bottom) myopic LASIK for eye M6	244

ACKNOWLEDGEMENTS

I would like to thank those who, during all these years, have helped me in one or another way with their help and support.

First, I must thank my supervisors for their support during this thesis. This odyssey would have not started without Susana Marcos's suggestion and encouragement to could use my lab work to complete a good thesis. From her I learnt not only about science but also about how to do things right. Luis Díaz-Santana did not hesitate to offer his experience and support from London, giving me the possibility to get a PhD degree. John Barbur was there whenever his experience in academic procedures was necessary. Thank you all.

I would like to thank the Comunidad Autónoma de Madrid (CAM) and the European Social Fund because the fellowship they awarded me (1999-2001) allowed me to confirm that I like doing research.

Some people have contributed more directly to part of the work presented here even if their names do not appear in the corresponding chapter: Esther Moreno-Barriuso contributed in the myopic LASIK measurements and the early stages of the infrared-green comparison; Sergio Barbero participated in the measurements of Chapters 3 and 4; Guadalupe Rodríguez and Raúl Martín from IOBA organised and carried out the optometric measurements of the LASIK patients (Chapter 7); Agustin Mayo, also from IOBA, advised me about the statistics of polarisation (Chapter 3), and Laura Barrios about the statistics of calibrations (Chapter 2), sampling patterns (Chapter 5) and ametropic eves (Chapter 6); C. Dainty and the Photonics Optics Group at Imperial College allowed L. Díaz-Santana the use and modifications of the HS wavefront sensor utilised in Chapter 4 and Y. Tsang from City University helped during the experimental sessions in London; Alberto de Castro and Noemi Carranza helped me with Gaussian fitting algorithms, and Javier Portilla, Carlos Dorronsoro and Rafael Redondo helped me with the image processing of the passive eye tracking on Chapter 2. I would also like to thank all those who volunteered for being subjects in the different studies. This thesis would not exist without you.

Being in David Williams' lab in Rochester was a great opportunity which I really enjoyed. I would like to thank the organisers of the CVS undergraduate summer fellowship, and specially David Williams for giving me this opportunity. I would also like to thank the people I could interact with then, and specially Jason, Stacey, Nathan, Li Chen, and Debbie Shannon&Co. for their help.

I would like to thank Luis Díaz-Santana for the opportunity to spend some time in his adaptive optics lab. Thanks to Carolina, Franzisca, Brice, Cristiano and specially Marisa and for their help in London, and to Julien for his invaluable help in the lab. Thanks also to the staff for their help with the bureaucracy, and specially Steve Bunting for his help and patience.

Thanks to people from IOBA (especially Guadalupe, María, Isabel Vicky, Bety, Tomás, Raúl, Jesús) for being always so helpful.

Thank you also to my workmates: Esther, for teaching me so much in my first months in the lab; Sergio, for your help all these years in so many things; Patricia and Elena, for sharing basement and measurement sessions in the tough times, for your help and encouragement until the end, and for bearing me in the worst moments. Dani, thanks for sharing your knowledge about human nature, and about conics fitting. Carlos, thanks for your effort to make the LRT2 system work, for your enthusiasm and for the times you have supported me. Sergio thanks for your help, trying to explain me all those hardcore optics. Enrique and Alfonso, for your help in the lab and for trying to make me more positive. It might work from now on. Requejo, I really learnt a lot from you. Damian, thanks for devoting your spare time selflessly to help me. Alberto, thanks for your help from Gaussian fitting to measurements, for your patience and for interesting discussions. Lucie thank you for so much: for your help and patience, for your hard work, for cheering me up and teaching me so much...and for discovering me the Tariquet!!. Laura, thank you for being always ready to help and for sharing your happiness with everyone. Thanks to you both for being the other two Ls and for your permanent smiles. Saro, it was great to have you in the lab, and to keep in touch since, thanks for your support. Thanks also to Ainara and Vincenzo for being so supportive, good listeners and patient, to Noemí for being the helpful specialist in Word templates and for learning court procedures with me, among other things, and Ana, Vali, Sylvain, Héctor, Amelia, Raul, Oscar, Víctor, Dani, Sara, Michela, Andrés (bambino!), Jesús (mozo!), Alex, Isi, David, Elena, Jeremie, Marcial, Lorena, Lidia, Cristian, Jose A., Vincenzo G, Jan, Portilla, and of course Matts (and Esther), José Luis, Belén, Erwin & Robin, M^a Ángeles...

Thanks to all the colleagues that, during all these years, have helped me in one or other way. Thanks to Steve Burns for processing the sampling patterns data almost in real time from the other side of the ocean and for his advices.

Thanks to all the staff of Instituto de Óptica in Madrid: Chary, Encarnita y Eloy por resolver tanto con paciencia y una sonrisa; a Sole, Encarnita, Yali, Eduardo y Mari Paz por la paciencia con el flujo de pacientes. Paquita, muchas gracias por tu cariño. Gracias Benito por tu ayuda en el taller. Marisa, Mª Luisa, Sole, Cecilia gracias por mantener todo limpio y ordenado con una sonrisa. Belén, Chema y demás gente de mantenimiento, gracias por solucionar las cosas casi al momento. Mª Jesús muchas gracias por tu eficiencia y tu amabilidad a cargo del almacén. Armando, muchas gracias por tu ayuda todos estos años especialmente por resucitar al LRT2 tantas veces, junto con Gema y Carlos. Carlos, gracias por tu ayuda tantas veces tan paciente y eficientemente. Gracias Vicente y Pepe Granados por vuestra ayuda cada vez que la he pedido.

No habría podido llegar aquí sin los que me habéis ayudado con mis problemas de salud. Gracias a todos, y especialmente a Alicia Hernán, Eduardo Zamorano, Yolanda Plata y Sofía (Fisyos).

Muchas gracias por vuestra paciencia a todos los que habéis sufrido mi estrés o mis desapariciones en las peores épocas, sobre todo a Silvia y a Mari Paz por su infinita paciencia y cariño, y a Rebeca y Ana por soportar mis peores momentos en casa. Especialmente quiero dar las gracias a mi madre porque gracias a su "el no ya lo tienes" he llegado a hacer cosas de las que nunca me hubiera imaginado capaz. Por su comprensión, por su apoyo constante y por enseñarme que uno tiene que vivir según sus reglas aunque juegue en desventaja, si quiere ser feliz. Sin ella hoy no estaría aquí...en todos los sentidos. A mi padre, por las veces que me ha apoyado pese a no entender por qué trabajaba tanto en algo que ni me aseguraba un futuro ni me sacaría de pobre, por mantenerme con los pies en la tierra. Ambos me han enseñado a trabajar duro y hacer las cosas bien hechas. A César, Javi, Marta y Ana, por las veces que han tenido paciencia conmigo y las que me han hecho reír cuando estaba a punto de llorar. Eso no tiene precio, y no lo consigue cualquiera. To Neil...he knows why.

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied in whole or in part without further reference to me. This permission covers only single copies made for study purposes, subject to normal conditions of acknowledgement.

Abstract

In this thesis the laser ray tracing (LRT) technique for measurement of ocular aberrations has been implemented, validated and applied, in conjunction with complementary techniques, to the study of ocular aberrations in human eyes. In particular, we studied optical aberrations in myopic and hyperopic eyes and the optical changes induced by refractive surgery for myopia and hyperopia.

We have studied the impact of the optimisation of some experimental parameters on the estimation of the wave aberration. We demonstrated that although the polarisation state and wavelength of the illumination light affected the intensity patterns of the images obtained using reflectometric aberrometry (LRT and Hartmann Shack sensor), these changes did not affect the estimation of aberrations. We also showed that the difference in the defocus term (focus shift) due to the use of different wavelengths is in agreement with the Longitudinal Chromatic Aberration of the Indiana Chromatic Eye Model for average normal eyes, although intersubject variability is not negligible. In addition, we studied experimentally the influence of the geometrical distribution and density of the pupil sampling on the estimation of aberrations using artificial and normal human eyes, and performed numerical simulations to extend our results to "abnormal"eyes. We found that the spatial distribution of the samples can be more important than the number of samples, for both our measured as well as our simulated "abnormal" eyes. Experimentally, we did not find large differences across patterns except, as expected, for undersampled patterns.

We found that hyperopic eyes tended to have more positive asphericity and greater total and corneal spherical aberration than myopic eyes, as well as greater 3rd and higher order aberrations. Although we found no significant differences between groups in terms of internal aberrations, internal spherical aberration showed a significant age-related shift toward less negative values in the hyperopic group. We also assessed the impact of the LASIK corneal surgery, a popular surgical technique for correction of refractive errors, on the optical quality for both myopic and hyperopic standard techniques. Third and higher order ocular and anterior corneal aberrations increased with the surgery. Ocular and corneal spherical aberration changed towards more positive values with myopic LASIK, and towards more negative values with hyperopic LASIK. Changes in internal spherical aberration. Changes induced by hyperopic LASIK were larger than those induced by myopic LASIK for a similar attempted correction.

KEY FOR SYMBOLS AND ABBREVIATIONS

2D	two dimensional
3D	three dimensional
A49	Albrecht pattern with 49 samples
AL	Axial Length
AL/CR	Axial Length to Corneal Radius ratio
ANOVA	Analysis of Variance
CCD	Coupled Charge Device
Cn	Circular pattern with n samples
CPP	Conjugate Pupil Plane
CR	Corneal Radius
CRT	Cathode Ray Tube
CSF	Contrast Sensitivity Function
D	Dioptres
DF	Dichroic Filter
FA	Field Aperture
FB	Focusing Block
GRIN	Gradient Index
HCA	Hierarchical cluster analysis
He-Ne	Helium Neon
Hn	Hexagonal pattern with n samples
НОА	3 rd and Higher Order Aberrations (excluding piston, tilts, defocus and astigmatism)
HS	Hartmann-Shack
i.e.	id est, this is
IR	Infrared
J49	Jacobi pattern with 49 samples
λ	Wavelength
L	lens
L49	Legendre pattern with 49 samples

LASIK	Laser Assisted In situ Keratomileusis
LCA	Longitudinal Chromatic Aberration
LED	Light Emitting Diode
LP	Linear Polariser
LRT	Laser Ray Tracing
LRT1	1st generation laser ray tracing device
LRT2	2nd generation laser ray tracing device
μm	microns
MPE	Maximum Permitted Exposure
mrad	milliradians
MTF	Modulation Transfer Function
nm	nanometres
0	degrees
OCT	Optical Coherence Tomography
PCBS	Polarising Cubic Beam Splitter
PRK	PhotoRefractive Keratectomy
PSF	Point-Spread Function
Q	Asphericity
QWP	Quarter Wave Plate
R	Radius of curvature
RMS	Root Mean Square wavefront error
Rn	Rectangular pattern with n samples
RPE	Retinal Pigment Epithelium
SA	Spherical Aberration
SE	Refractive error Spherical Equivalent
SF	Spatial Filter
SRR	Spatially Resolved Refractometre
std	standard deviation
TCA	Transverse Chromatic Aberration
vs	Versus, compared to